版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第 3 講多邊形及其內(nèi)角和(11.3)圖1n條邊就叫做n邊形.三角形、四邊形都屬于多邊形,其中三角實用文檔、知識點總結(jié)(定義:由三條或三條以上的線段首位順次連接所組成的封閉圖形叫做多邊形.分類2:多邊形凸多邊形凹多邊形正多邊形:各邊相等,各角也相等的多邊形叫做正多邊形.非正多邊形: 1、n邊形的內(nèi)角和等于180(n-2).2、任意凸形多邊形的外角和等于360.3、n邊形的對角線條數(shù)等于1/2n(n-3)只用一種正多邊形:3、4、6/.I鑲嵌(,拼成360度的角I只用一種非正多邊形(全等):3、4.,知識點一:多邊形及有關(guān)概念1 1、多邊形的定義:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多
2、邊形(1)多邊形的一些要素:邊:組成多邊形的各條線段叫做多邊形的邊.頂點內(nèi)角外角每相鄰兩條邊的公共端點叫做多邊形的頂點.多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個n邊形有n個內(nèi)角.多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角o(2)在定義中應(yīng)注意:一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));首尾順次相連,二者缺一不可理解時要特別注意“在同一平面內(nèi)這個條件,其目的是為了排除幾個點不共面的情況,即空間多邊形.2 2、多邊形的分類:(1)多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一條邊所在的直線,如果整個多邊形都在這條直線的同一側(cè),那么此多邊形為凸多邊形,反之為凹多邊形(見圖多邊形.
3、1).本章所講的多邊形都是指凸凸多邊形(2)多邊形通常還以邊數(shù)命名,多邊形有形是邊數(shù)最少的多邊形.知識點二:正多邊形標(biāo)準(zhǔn)文案角都相等的四邊形也不一定是正方形,只有滿足四邊都相等且四個角也都相等的四邊形才是正方形知識點三:多邊形的對角線多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線一條對角線.要點詮釋:1從n邊形一個頂點可以引n-3條對角線,將多邊形分成n2個三角形.摘-32n邊形共有2條對角線.證實:過一個頂點有n3條對角線n3的正整數(shù),又共有n個頂點,共有nn-3i i.公式:R邊形的內(nèi)角和為用 21181,21181,之3.2 2.公式的證實:實用文檔各個角都相等、各
4、個邊都相等的多邊形叫做正多邊形.如正三角形、正方形、正五邊正三角形要點詮釋:正五邊形正六邊形正十二邊形各角相等、各邊也相等是正多邊形的必備條件,二者缺一不可.如四條邊都相等的四邊形不一定是正方形,四個條對角線,但過兩個不相鄰頂點的對角線重復(fù)了一次,線.知識點四:多邊形的內(nèi)角和公式工加-3,凸n邊形,共有2條對角BD為四邊形ABCD的證法1:1:在在邊形內(nèi)任取一點,并把這點與各個頂點連接起來,共構(gòu)成界個三角形,這出個三角形的內(nèi)角和為證法再減去一個周角,即得到前邊形的內(nèi)角和為(2)儂.2:從 R 邊形一個頂點作對角線,可以作冷-與條對角線,并且衣邊形被分成用-2個三角形,這例-2個三角形內(nèi)角和恰好
5、是 R 邊形的內(nèi)角和,等于再-248.證法 3:3:在并邊形的一邊上取一點與各個頂點相連,得伊-1個三角形,力邊形內(nèi)角和等于這例一1個三角形的內(nèi)角和減去所取的一點處的一個平角的度數(shù),即1聯(lián)-陶,-2y儆.要點詮釋:i注意:以上各推導(dǎo)方法表達(dá)出將多邊形問題轉(zhuǎn)化為三角形問題來解決的根底思想.2內(nèi)角和定理的應(yīng)用:多邊形的邊數(shù),求其內(nèi)角和;多邊形內(nèi)角和,求其邊數(shù).知識點五:多邊形的外角和公式1 1.公式:多邊形的外角和等于360.2 2.多邊形外角和公式的證實:多邊形的每個內(nèi)角和與它相鄰的外角都是鄰補角,所以用邊形的內(nèi)角和加外角和為標(biāo)準(zhǔn)文案實用文檔加即,外角和等于丹48-(用-2)8=36Q*.注意:
6、n邊形的外角和恒等于360.,它與邊數(shù)的多少無關(guān).要點詮釋:(i)外角和公式的應(yīng)用:外角度數(shù),求正多邊形邊數(shù);正多邊形邊數(shù),求外角度數(shù).(2)多邊形的邊數(shù)與內(nèi)角和、外角和的關(guān)系:n邊形的內(nèi)角和等于(n-2)-180(n3,n是正整數(shù)),可見多邊形內(nèi)角和與邊數(shù)n有關(guān),每增加1條邊,內(nèi)角和增加180.多邊形的外角和等于360,與邊數(shù)的多少無關(guān).知識點六:鑲嵌的概念和特征1 1、定義:用一些不重疊擺放的多邊形把平面的一局部完全覆蓋,通常把這類問題叫做用多邊形覆蓋平面(或平面鑲嵌).這里的多邊形可以形狀相同,也可以形狀不相同.2 2、實現(xiàn)鑲嵌的條件:拼接在同一點的各個角的和恰好等于360.;相鄰的多邊
7、形有公共邊.3 3、常見的一些正多邊形的鑲嵌問題:(1)用正多邊形實現(xiàn)鑲嵌的條件:邊長相等;頂點公用;在一個頂點處各正多邊形的內(nèi)角之和為360.(2)只用一種正多邊形鑲嵌地面對于給定的某種正多邊形,怎樣判斷它能否拼成一個平面圖形,且不留一點空隙?解決問題的關(guān)鍵在于正多邊形的內(nèi)角特點.當(dāng)圍繞一點拼在一起的幾個正多邊形的內(nèi)角加在一起恰好組成一個周角360時,就能鋪成一個平面圖形.(2)以口事實上,正n邊形的每一個內(nèi)角為n,要求k個正n邊形各有一個內(nèi)角拼于一點,恰好覆蓋地面,這樣1802線43600=用,由此導(dǎo)出k=療-2=2+療-2,而k是正整數(shù),所以n只能取3,4,6.因而,用相同的正多邊形地磚
8、鋪地面,只有正三角形、正方形、正六邊形的地磚可以用.注意:任意四邊形的內(nèi)角和都等于360.所以用一批形狀、大小完全相同但不規(guī)那么的四邊形地磚也可以鋪成無空隙的地板,用任意相同的三角形也可以鋪滿地面.(3)用兩種或兩種以上的正多邊形鑲嵌地面用兩種或兩種以上邊長相等的正多邊形組合成平面圖形,關(guān)鍵是相關(guān)正多邊形“交接處各角之和能否拼成一個周角的問題.例如,用正三角形與正方形、正三角形與正六邊形、正三角形與正十二邊形、正四邊形與正八邊形都可以作平面鑲嵌,見以下圖:又如,用一個正三角形、 兩個正方形、 一個正六邊形結(jié)合在一起恰好能夠鋪滿地面,由于它們的交接處各角之和恰好為一個周角360.規(guī)律方法指導(dǎo)1
9、.內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少.每增加一條邊,內(nèi)角的和就增加180(反過來也成立),且多邊形的內(nèi)角和必須是180的整數(shù)倍.2.多邊形外角和恒等于360,與邊數(shù)的多少無關(guān)3.多邊形最多有三個內(nèi)角為銳角,最少沒有銳角(如矩形);多邊形的外角中最多有三個鈍角,最少沒有鈍角.4.在運用多邊形的內(nèi)角和公式與外角的性質(zhì)求值時,問題的常用方法.標(biāo)準(zhǔn)文案,運用方程思想是解決本節(jié)實用文檔5.在解決多邊形的內(nèi)角和問題時,通常轉(zhuǎn)化為與三角形相關(guān)的角來解決.三角形是一種根本圖形,是研究復(fù)雜圖形的根底,同時注意轉(zhuǎn)化思想在數(shù)學(xué)中的應(yīng)用二、經(jīng)典例題透析類型一:多邊形內(nèi)角和及外角和定理應(yīng)用1
10、 .一個多邊形的內(nèi)角和等于它的外角和的5倍,它是幾邊形?總結(jié)升華:此題是多邊形的內(nèi)角和定理和外角和定理的綜合運用.只要設(shè)出邊數(shù)片,根據(jù)條件列出關(guān)于丹的方程,求出火的值即可,這是一種常用的解題思路.舉一反三:【變式 1 1】假設(shè)一個多邊形的內(nèi)角和與外角和的總度數(shù)為1800.,求這個多邊形的邊數(shù).【變式 22一個多邊形除了一個內(nèi)角外,其余各內(nèi)角和為27500,求這個多邊形的內(nèi)角和是多少?【答案】設(shè)這個多邊形的邊數(shù)為耳,這個內(nèi)角為/,【變式 3 3】一個多邊形的內(nèi)角和與某一個外角的度數(shù)總和為1350.,求這個多邊形的邊數(shù).類型二:多邊形對角線公式的運用【變式 1 1】一個多邊形共有20條對角線,那么
11、多邊形的邊數(shù)是.A.6B.7C.8D.9【變式 22一個十二邊形有幾條對角線.赤-3總結(jié)升華:對于一個n邊形的對角線的條數(shù),我們可以總結(jié)出規(guī)律2 2 一條,牢記這個公式,以后只要用相應(yīng)的n的值代入即可求出對角線的條數(shù),要記住這個公式只有在理解的根底之上才能記得牢.類型四:實際應(yīng)用題類型三:可轉(zhuǎn)化為多邊形內(nèi)用和問題【艾式 1 1】如圖所不,/1+/2+/3+【艾式 2 2】如下圖,求/A+ZB+./C+/D+/E+/F的度數(shù).,小E E一一2乂小汽車從P市出發(fā),先到B市,再到C市,再到A市,最后返回P市,標(biāo)準(zhǔn)文案4.如圖,一輛這輛小汽車共轉(zhuǎn)了實用文檔多少度角?思路點撥:根據(jù)多邊形的外角和定理解決
12、舉一反三:【變式1 1】 如下圖,小亮從A點出發(fā)前進(jìn)10m,向右轉(zhuǎn)15,再前進(jìn)10m,又向右轉(zhuǎn)15,這樣一直走下去,當(dāng)他第一次回到出發(fā)點時,一共走了m.【變式 2 2小華從點A出發(fā)向前走10米,向右轉(zhuǎn)36.,然后繼續(xù)向前走10米,再向右轉(zhuǎn)36.,他以同樣的方法繼續(xù)走下去,他能回到點A嗎?假設(shè)能,當(dāng)他走回點A時共走了多少米?假設(shè)不能,寫出理由.【變式 3 3如下圖是某廠生產(chǎn)的一塊模板,該模板的邊AB/CF,CD/AE.按規(guī)定AB、CD的延長線相交成80.角,因交點不在模板上,不便測量.這時師傅告訴徒弟只需測一個角,便知道AB、CD的延長線的夾角是否符合規(guī)定,你知道需測哪一個角嗎?說明理由思路點撥
13、:此題中將AB、CD延長后會得到一個五邊形,根據(jù)五邊形內(nèi)角和為540,又由AB/CF,CD/AE,可知/BAE+/AEF+/EFC=360,從540中減去80.再減去360.,剩下/C的度數(shù)為100.,所以只需測/C的度數(shù)即可,同理還可直接測/A的度數(shù).總結(jié)升華:此題實際上是多邊形內(nèi)角和的逆運算,關(guān)鍵在于正確添加輔助線類型五:鑲嵌問題5.分別畫出用相同邊長的以下正多邊形組合鋪滿地面的設(shè)計圖.(1)正方形和正八邊形;(2)正三角形和正十二邊形;(3)正三角形、正方形和正六邊形.思路點撥:只要在拼接處各多邊形的內(nèi)角的和能構(gòu)成一個周角,那么這些多邊形就能作平面鑲嵌.解析:正三角形、正方形、正六邊形、
14、正八邊形、正十二邊形的每一個內(nèi)角分別是60、90、120、135、150.(1)由于90+2X135=360,所以一個頂點處有1個正方形、2個正八邊形,如圖(1)所示.(2)由于60+2X150=360,所以一個頂點處有1個正三角形、2個正十二邊形,如圖(2)所示.(3)由于60+2X90+120=360,所以一個頂點處有1個正三角形、1個正六邊形和2個正方形,如圖(3)所示.總結(jié)升華:用兩種以上邊長相等的正多邊形組合成平面圖形,實質(zhì)上是相關(guān)正多邊形“交接處各角之和能否拼成一個周角的問題.舉一反三:【變式 1 1】分別用形狀、大小完全相同的三角形木板;四邊形木板;正五邊形木板;正六邊形木板作平
15、面鑲嵌,其中不能鑲嵌成地板的是()A、B、C、D、解析:用同一種多邊形木板鋪地面,只有正三角形、四邊形、正六邊形的木板可以用,不能用正五邊形木板,故【變式 2 2用三塊正多邊形的木板鋪地,拼在一起并相交于一點的各邊完全吻合,其中兩塊木板的邊數(shù)都是那么第三塊木板的邊數(shù)應(yīng)是()8,標(biāo)準(zhǔn)文案實用文檔A、4B、5C、6D、8【答案】A提示:先算出正八邊形一個內(nèi)角的度數(shù),再乘以2,然后用360減去剛剛得到的積,便得到第三塊木板一個內(nèi)角的度數(shù),進(jìn)而得到第三塊木板的邊數(shù)三、綜合練習(xí)、選擇題:1.一個多邊形的內(nèi)角和是720,那么這個多邊形是A.四邊形B.五邊形C.六邊形D.七邊形2.一個多邊形的內(nèi)角和比它的外
16、角和的3倍少180,這個多邊形的邊數(shù)是A.5B.6C.7D.83.假設(shè)正n邊形的一個外角為60,那么n的值是A.4B.5C.6D.84.以下角度中,不能成為多邊形內(nèi)角和的是A.600B.720C.900D.10805.假設(shè)一個多邊形的內(nèi)角和與外角和之和是1800,那么此多邊形是A.八邊形B.十邊形C.十二邊形D.十四邊形6.以下命題:多邊形的外角和小于內(nèi)角和,三角形的內(nèi)角和等于外角和,多邊形的外角和是指這個多邊形所有外角之和,四邊形的內(nèi)角和等于它的外角和.其中正確的有A.0個B.1個C.2個D.3個7.一個多邊形的邊數(shù)增加2條,那么它的內(nèi)角和增加A.180B.90C.360D.5408.過多邊
17、形的一個頂點可以作7條對角線,那么此多邊形的內(nèi)角和是外角和的A.4倍B.5倍C.6倍D.3倍9 .在四邊形ABCD中,NA、NB、/C、/D的度數(shù)之比為2:3:4:3,那么ND的外角等于A.60B.75C.90D.12.110 .在各個內(nèi)角都相等的多邊形中,一個內(nèi)角是與它相鄰的一個外角的3倍,那么這個多邊形的邊數(shù)是A.4B.6C.8D.1011.如圖,AB/CD/EF,那么以下各式中正確的選項是A.Z1+Z2+Z3=180B.Z1+Z2-Z3=90C.Z1-Z2+Z3=90D.Z2+Z3-Z1=18012 .在以下條件中:/A+/B=/C/A:/B:/C=1:2:3/A=90/B/A=/B=/
18、C中,能確定AABC是直角三角形的條件有A.B.C.D.二、填空題1 .五邊形的內(nèi)角和等于度.2.假設(shè)一凸多邊形的內(nèi)角和等于它的外角和,那么它的邊數(shù)是.3 .正十五邊形的每一個內(nèi)角等于度.4.十邊形的對角線有條.5 .內(nèi)角和是1620的多邊形的邊數(shù)是.6.一個多邊形的每一個外角都等于36,那么這個多邊形的內(nèi)角和是.7.一個多邊形的內(nèi)角和是外角和的4倍,那么這個多邊形是邊形.1.8 .等腰梯形ABCM,AD/BC,假設(shè)/B=-ZD,那么/A的外角是.939.如圖在ABC中,D是/ACB/ABC的角平分線的交點,BD的延長線交AC于E,且/EDC=50,那么/A的度數(shù)為.標(biāo)準(zhǔn)文案實用文檔10.如圖
19、,在六邊形ABCDE沖,AF/CDAB/DE且/A=120,/B=80,那么/C的度數(shù)是,/D的度數(shù)是.10題圖三、計算題1.一個多邊形的每一個外角都等于450,求這個多邊形的內(nèi)角和.2.一個多邊形的每一個內(nèi)角都等于144,求它的邊數(shù)3.如果四邊形有一個角是直角,另外三個角的度數(shù)之比為2:3:4,那么這三個內(nèi)角的度數(shù)分別是多少?4.一個正多邊形的一個內(nèi)角比相鄰?fù)饨谴?60,求這個正多邊形的邊數(shù)5 .多邊形的內(nèi)角和等于1440,求1這個多邊形的邊數(shù),2過一個頂點有幾條對角線,3總對角線條數(shù)26.一個多邊形的外角和是內(nèi)角和的一,求這個多邊形的邊數(shù);727.一多邊形的每一個內(nèi)角都相等,它的外角等于內(nèi)
20、角的一,求這個多邊形的邊數(shù);38.一多邊形內(nèi)角和為23400,假設(shè)每一個內(nèi)角都相等,求每個外角的度數(shù)9.四邊形ABCD43,/A:/B=7:5,/A-/C=/B,/C=/D-40,求各內(nèi)角的度數(shù)10.一個多邊形,除一個內(nèi)角外,其余各內(nèi)角之和等于1000.,求這個內(nèi)角及多邊形的邊數(shù)標(biāo)準(zhǔn)文案實用文檔11.如圖,一個六邊形的六個內(nèi)角都是120,AB=1,BC=CD=3,DE=2,求該六邊形的周長四、拓展練習(xí)1.探究:(1)如圖/1+/2與NB+NC有什么關(guān)系?為什么?(2)把圖AABC沿DE折疊,得到圖,填空:Z1+Z2ZB+ZC(填“=),當(dāng)/人=401時,ZB+/C+/1+/2=.(3)如圖,是由圖的AABC沿DE折疊得到的,如果2A=30.那么x+y=360(ZB+ZC+Z1+Z2)=360-從而猜測x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購基金服務(wù)合同
- 九年級道德與法治下冊 第二單元 世界舞臺上的中國 第四課 與世界共發(fā)展 第一框 中國的機遇與挑戰(zhàn)教案 新人教版
- 二年級品德與生活下冊 大自然中的伙伴教案 遼海版
- 安徽省滁州二中九年級體育 第21次課教案
- 2024年秋七年級英語上冊 Unit 1 This is me Grammar教案 (新版)牛津版
- 2024秋八年級物理上冊 第1章 機械運動 第3節(jié) 運動的快慢教案(新版)新人教版
- 2023六年級英語上冊 Unit 11 Shall we go to the theatre說課稿 湘少版
- 廚房管理規(guī)章制度
- 租賃交通標(biāo)志合同范本(2篇)
- 屈原 節(jié)選 課件
- 凈化車間施工組織方案
- 作文考試專用稿紙_(A3完美打印版)
- 二等水準(zhǔn)測量計算表
- 消防控制室記錄表
- 小學(xué)三年級下冊道德與法治課件-8.大家的朋友-部編版(15張)課件
- 南昌市南京路醫(yī)藥谷工程勘察報告資料
- TAPP手術(shù)技巧精品課件講座
- 信貸A初級題庫(判斷、單選題、多選題)
- 金屬材料的彈性變形與塑性變形
- 不銹鋼面板吊頂施工工藝(詳細(xì))
- 使用INSITE刷寫ECM標(biāo)定操作指導(dǎo)PPT課件
評論
0/150
提交評論