




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高二數(shù)學(xué)易錯知識點歸納五篇高二這一年,是成績分化的分水嶺,成績會形成兩極分化:行則扶搖直上,不行則每況愈下。下面就是松鼠給大家?guī)淼母叨?shù)學(xué)知識點,希望能幫助到大家!高二數(shù)學(xué)知識點11不等式證明的依據(jù)(2)不等式的性質(zhì)(略)(3)重要不等式:|a|;20;(-b)20(、)2+2ab(a、R,當(dāng)且僅當(dāng)ab時取“=”號)2不等式的證明方法(1)比較法:要證明ab(0(a-bl;),這種證明不等式的方法叫做比較法.用比較法證明不等式的步驟是:作差變形判斷符號.(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.()分析法:從
2、欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.高二數(shù)學(xué)知識點2第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。第二章:基本初等函數(shù):指數(shù)、對數(shù)
3、、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習(xí)基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是??汲ee點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問題也要了解清楚。第三章:函數(shù)的應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實就是的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點
4、,要學(xué)會在這三者之間的靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習(xí)強化。這二次函數(shù)的零點的判別法,這個倒不算難。高二數(shù)學(xué)知識點3導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量在一點x0上產(chǎn)生一個增量x時,函數(shù)輸出值的增量y與自變量增量x的比值在趨于0時的極限如果存在,即為在x0處的導(dǎo)數(shù),記作#3;(0)或df(x0)/x。導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導(dǎo)數(shù)就是該函數(shù)
5、所代表的曲線在這一點上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進(jìn)行局部的線性逼近。例如在運動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點上都有導(dǎo)數(shù)。若某函數(shù)在某一點導(dǎo)數(shù)存在,則稱其在這一點可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。對于可導(dǎo)的函數(shù)(x),x?f#39;(x)也是一個函數(shù),稱作()的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了
6、求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。高二數(shù)學(xué)知識點導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.2.導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率k=f/(x0)表示過曲線f(x)上(x0,f(x0))切線斜率。=/(t)表示即時速度。=v/(t)表示加速度。.常見函數(shù)的導(dǎo)數(shù)公式:;;;。4.導(dǎo)數(shù)的四則運算法則:5.導(dǎo)數(shù)的應(yīng)用:()利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。()求極值的步驟:求導(dǎo)數(shù)
7、;求方程的根;列表:檢驗在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;(3)求可導(dǎo)函數(shù)值與最小值的步驟:求的根;把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。高二數(shù)學(xué)知識點51在中學(xué)我們只研直圓柱、直圓錐和直圓臺。所以對圓柱、圓錐、圓臺的旋轉(zhuǎn)定義、實際上是直圓柱、直圓錐、直圓臺的定義。這樣定義直觀形象,便于理解,而且對它們的性質(zhì)也易推導(dǎo)。對于球的定義中,要注意區(qū)分球和球面的概念,球是實心的。等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區(qū)分。2.圓柱、圓錐、圓和球的性質(zhì)(
8、1)圓柱的性質(zhì),要強調(diào)兩點:一是連心線垂直圓柱的底面;二是三個截面的性質(zhì)平行于底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。(2)圓錐的性質(zhì),要強調(diào)三點平行于底面的截面圓的性質(zhì):截面圓面積和底面圓面積的比等于從頂點到截面和從頂點到底面距離的平方比。過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:易知,截面三角形的頂角不大于軸截面的頂角(如圖10-0),事實上,由AB,VC=B=可得VBC.由于截面三角形的頂角不大于軸截面的頂角。所以,當(dāng)軸截面的頂角0,有0lt;
9、90,即有當(dāng)軸截面的頂角時,軸截面的面積卻不是的,這是因為,若0lt;lt;10時,1sinin0.圓錐的母線l,高h(yuǎn)和底面圓的半徑組成一個直徑三角形,圓錐的有關(guān)計算問題,一般都要歸結(jié)為解這個直角三角形,特別是關(guān)系式lh2+R(3)圓臺的性質(zhì),都是從“圓臺為截頭圓錐”這個事實推得的,高考,但仍要強調(diào)下面幾點:圓臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。平行于底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為S,則其中S和S2分別為上、下底面面積。的截面性質(zhì)的推廣。圓臺的母線l,高h(yuǎn)和上、下兩底圓的半徑r、,組成一個直角梯形,且有2=h2+(-)2圓臺的有關(guān)計算問題,常歸結(jié)為解這個直角梯形。()球的性質(zhì),著重掌握其截面的性質(zhì)。用任意平面截球
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建造合同收入【會計實務(wù)經(jīng)驗之談】
- 旅游會展行業(yè)發(fā)展趨勢考核試卷
- 醫(yī)療器械技術(shù)人才培養(yǎng)考核試卷
- 收養(yǎng)家庭育兒指導(dǎo)手冊編制考核試卷
- 化學(xué)纖維在餐飲美食等行業(yè)的應(yīng)用考核試卷
- 出租車行業(yè)聯(lián)盟與合作模式探索考核試卷
- 企業(yè)人力資源戰(zhàn)略規(guī)劃考核試卷
- 建筑物清潔服務(wù)心理素質(zhì)培養(yǎng)考核試卷
- 收納培訓(xùn)課件模板
- 汽車按揭合同抵押合同范本
- 關(guān)于納粹德國元首希特勒的歷史資料課件
- 新媒體運營說課CHAPTER課件講解
- GB/T 44112-2024電化學(xué)儲能電站接入電網(wǎng)運行控制規(guī)范
- 加油站加油合同范本
- 河南省南陽市2024-2025學(xué)年七年級上學(xué)期期末模擬英語試題(含答案)
- 2024年高中數(shù)學(xué)新課程標(biāo)準(zhǔn)考試模擬測試題及答案
- 煤礦員工安全培訓(xùn)教材一通三防篇
- 表演課程教案完整版
- 2024年新疆區(qū)公務(wù)員錄用考試《行測》試題及答案解析
- DB14-T 2736-2023 池塘養(yǎng)殖尾水處理規(guī)范
- 體重管理健康科普教育
評論
0/150
提交評論