(完整版)小學(xué)奧數(shù)很簡單,就這30個知識點_第1頁
(完整版)小學(xué)奧數(shù)很簡單,就這30個知識點_第2頁
(完整版)小學(xué)奧數(shù)很簡單,就這30個知識點_第3頁
(完整版)小學(xué)奧數(shù)很簡單,就這30個知識點_第4頁
(完整版)小學(xué)奧數(shù)很簡單,就這30個知識點_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1 .和差倍冋題和差問題 和倍問題 差倍問題已知條件幾個數(shù)的和與差幾個數(shù)的和與倍數(shù)幾個數(shù)的差與倍數(shù)公式適用范圍 已知兩個數(shù)的和,差,倍數(shù)關(guān)系公式 和一差)十2=較小數(shù)較小數(shù)+差=較大數(shù)和-較小數(shù)=較大數(shù) (和+差)-2=較大數(shù)較大數(shù)-差=較小數(shù)和-較大數(shù)=較小數(shù)和* (倍數(shù)+ 1)=小數(shù)小數(shù)X倍數(shù)=大數(shù)和-小數(shù)=大數(shù)差* (倍數(shù)-1)=小數(shù)小數(shù)X倍數(shù)=大數(shù)小數(shù)+差=大數(shù)關(guān)鍵問題 求出同一條件下的和與差和與倍數(shù)差與倍數(shù)2. 年齡問題的三個基本特征: 兩個人的年齡差是不變的; 兩個人的年齡是同時增加或者同時減少的; 兩個人的年齡的倍數(shù)是發(fā)生變化的;3. 歸一問題的基本特點:問題中有一個不變的量,一

2、般是那個“單一量”,題 目一般用“照這樣的速度”等詞語來表示。關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;4. 植樹問題 基本類型 在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲 線上植樹,兩端都不植樹 在直線或者不封閉的曲線上植樹,只有一端植樹 閉曲線上植樹基本公式棵數(shù)二段數(shù)+ 1棵距X段數(shù)=總長 棵數(shù)二段數(shù)1棵距X段數(shù)=總長 棵數(shù)二段數(shù)棵距X段數(shù)=總長關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系5. 雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分 置換出來;基本思路: 假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣): 假設(shè)后,發(fā)生了和

3、題目條件不同的差,找出這個差是多少; 每個事物造成的差是固定的,從而找出出現(xiàn)這個差的原因; 再根據(jù)這兩個差作適當?shù)恼{(diào)整,消去出現(xiàn)的差?;竟剑?把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)X總頭數(shù)-總腳數(shù))十(兔腳數(shù)-雞 腳數(shù)) 把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)X總頭數(shù))十(兔腳數(shù)一雞 腳數(shù))關(guān)鍵問題:找出總量的差與單位量的差。6. 盈虧問題基本概念:一定量的對象,按照某種標準分組,產(chǎn)生一種結(jié)果:按照另一種標 準分組,又產(chǎn)生一種結(jié)果,由于分組的標準不同,造成結(jié)果的差異,由它們的 關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭?基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結(jié)果的變化, 根據(jù)這個

4、關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量. 基本題型: 一次有余數(shù),另一次不足;基本公式:總份數(shù)=(余數(shù)+不足數(shù))*兩次每份數(shù)的差 當兩次都有余數(shù);基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))*兩次每份數(shù)的差 當兩次都不足;基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))寧兩次每份數(shù)的差 基本特點:對象總量和總的組數(shù)是不變的。關(guān)鍵問題:確定對象總量和總的組數(shù)。7牛吃草問題基本思路:假設(shè)每頭牛吃草的速度為“ T份,根據(jù)兩次不同的吃法,求出其中 的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量?;咎攸c:原草量和新草生長速度是不變的;關(guān)鍵問題:確定兩個不變的量?;竟剑荷?/p>

5、長量=(較長時間x長時間牛頭數(shù)-較短時間x短時間牛頭數(shù))十(長時間-短 時間);總草量=較長時間x長時間牛頭數(shù)-較長時間x生長量;8周期循環(huán)與數(shù)表規(guī)律周期現(xiàn)象:事物在運動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。關(guān)鍵問題:確定循環(huán)周期。閏年:一年有366天;年份能被4整除;如果年份能被100整除,則年份必須能被400整除;平年:一年有365天。年份不能被4整除;如果年份能被100整除,但不能被400整除;9 平均數(shù)基本公式:平均數(shù)=總數(shù)量*總份數(shù)總數(shù)量=平均數(shù)x總份數(shù)總份數(shù)=總數(shù)量十平均數(shù)平均數(shù)=基準數(shù)+每一個數(shù)與基準數(shù)差的和寧總份數(shù)基本算法: 求出總數(shù)

6、量以及總份數(shù),利用基本公式進行計算. 基準數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準數(shù);一般選與所有數(shù)比 較接近的數(shù)或者中間數(shù)為基準數(shù);以基準數(shù)為標準,求所有給出數(shù)與基準數(shù)的 差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基 準數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式。10.抽屜原理抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少 放有2個物體。例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有 以下四種情況: 4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點:總有那

7、么一個抽屜里 有2個或多于2個物體,也就是說必有一個抽屜中至少放有 2個物體。抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m那么必有一個抽屜 至少有: k=n/m +1個物體:當n不能被m整除時。 k=n/m個物體:當n能被m整除時。理解知識點:X表示不超過X的最大整數(shù)。例4.351=4 ; 0.321=0 ; 2.9999=2 ;關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜 原則進行運算。11 .定義新運算基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合) 運算?;舅悸罚簢栏癜凑招露x的運算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的 運算

8、,然后按照基本運算過程、規(guī)律進行運算。關(guān)鍵問題:正確理解定義的運算符號的意義。注意事項:新的運算不一定符合運算規(guī)律,特別注意運算順序。 每個新定義的運算符號只能在本題中使用。12. 數(shù)列求和等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫 做等差數(shù)列。基本概念:首項:等差數(shù)列的第一個數(shù),一般用al表示;項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用 n表示;公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用 d表示;通項:表示數(shù)列中每一個數(shù)的公式,一般用 an表示; 數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用 Sn表示.基本思路:等差數(shù)列中涉及五個量:al ,an, d, n,s n,通項公式中涉及

9、四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中 三個,就可以求這第四個?;竟剑和椆剑篴n = a1+ (n 1) d;通項二首項+(項數(shù)一 1)公差;數(shù)列和公式:sn ,= (a1+ an)n2 ;數(shù)列和=(首項+末項)項數(shù)2;項數(shù)公式:n= (an+ a1)d + 1 ;項數(shù)=(末項-首項)公差+ 1;公差公式:d = (an a1)(n 1);公差=(末項首項)(項數(shù)1);關(guān)鍵問題:確定已知量和未知量,確定使用的公式;13. 二進制及其應(yīng)用十進制:用09十個數(shù)字表示,逢10進1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。

10、所以234=200+30+4=2102+310+4=An 10 n-1+A n-110 n-2+A n-210 n-3+A n-310 n-4+A n-410 n-5+A n-610 n-7+ +A3102+A2101+A1100注意:N0=1; N1 =N (其中N是任意自然數(shù))二進制:用01兩個數(shù)字表示,逢2進1;不同數(shù)位上的數(shù)字表示不同的含義(2) = An2n-1+A n-12 n-2+A n-22 n-3+A n-32 n-4+A n-42 n-5+A n-62 n-7+A322+A221+A120注意:An不是0就是1 o十進制化成二進制: 根據(jù)二進制滿2進1的特點,用2連續(xù)去除這

11、個數(shù),直到商為0,然后把每 次所得的余數(shù)按自下而上依次寫出即可。 先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個差的 2的 n次方,依此方法一直找到差為 0,按照二進制展開式特點即可寫出。14. 加法乘法原理和幾何計數(shù)加法原理:如果完成一件任務(wù)有 n類方法,在第一類方法中有 m1種不同方法, 在第二類方法中有m2種不同方法,在第n類方法中有mn種不同方法,那 么完成這件任務(wù)共有:m1+ m2+mn 種不同的方法。關(guān)鍵問題:確定工作的分類方法。基本特征:每一種方法都可完成任務(wù)。乘法原理:如果完成一件任務(wù)需要分成 n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m

12、2種方法不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:mix m2x mn種不同的方法。關(guān)鍵問題:確定工作的完成步驟。基本特征:每一步只能完成任務(wù)的一部分。直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。直線特點:沒有端點,沒有長度。線段:直線上任意兩點間的距離。這兩點叫端點。線段特點:有兩個端點,有長度。射線:把直線的一端無限延長。射線特點:只有一個端點;沒有長度。 數(shù)線段規(guī)律:總數(shù)=1+2+3+ (點數(shù)一 1); 數(shù)角規(guī)律=1+2+3+ (射線數(shù)一 1); 數(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)x寬的線段數(shù): 數(shù)長方形規(guī)律:個數(shù)=1x 1+2X 2+3X 3+

13、行數(shù)x列數(shù)15質(zhì)數(shù)與合數(shù)質(zhì)數(shù):一個數(shù)除了 1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做 素數(shù)。合數(shù):一個數(shù)除了 1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。 分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用 短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標準表示形式:N=,其中a1、a2、a3 an都是合數(shù)N的質(zhì)因數(shù),且 a1<a2<a3< <an。求約數(shù)個數(shù)的公式:P=(r1+1) x (r2+1) x (r3+1) x x (rn+1)互質(zhì)數(shù):如果

14、兩個數(shù)的最大公約數(shù)是 1,這兩個數(shù)叫做互質(zhì)數(shù)。16. 約數(shù)與倍數(shù)約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做 這幾個數(shù)的最大公約數(shù)。最大公約數(shù)的性質(zhì):1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。4、幾個數(shù)都乘以一個自然數(shù) m所得的積的最大公約數(shù)等于這幾個數(shù)的最大 公約數(shù)乘以m例如:12的約數(shù)有1、2、3、4、6、12;18 的約數(shù)有:1、2、3、6、9、18;那么12和18的公約數(shù)有:1、2、3、6

15、;那么12和18最大的公約數(shù)是:6,記作(12,18)=6;求最大公約數(shù)基本方法:1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。2、短除法:先找公有的約數(shù),然后相乘。3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求 的最大公約數(shù)。公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做 這幾個數(shù)的最小公倍數(shù)。12的倍數(shù)有:12、24、36、48;18的倍數(shù)有:18、36、54、72;那么12和18的公倍數(shù)有:36、72、108;那么12和18最小的公倍數(shù)是36,記作12,18=36 ;最小公倍數(shù)的性質(zhì):1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)

16、。2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法17. 數(shù)的整除、基本概念和符號:1、 整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有 余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號:整除符號“ |”,不能整除符號“”;因為符號“”,所以的 符號“”;二、整除判斷方法:1. 能被2、5整除:末位上的數(shù)字能被2、5整除。2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被 4、25整除。3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被 8、125整除。4. 能被3、9整除:各個數(shù)

17、位上數(shù)字的和能被 3、9整除。5. 能被7整除: 末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。 逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6. 能被11整除: 末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除 奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。 逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7. 能被13整除: 末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除 逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。三、整除的性質(zhì):1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2.

18、如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。18. 余數(shù)及其應(yīng)用基本概念:對任意自然數(shù)a、b、q、r,如果使得a* b=qr,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。余數(shù)的性質(zhì): 余數(shù)小于除數(shù)。 若a、b除以c的余數(shù)相同,貝U c|a-b或c|b-a。 a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c 的余數(shù)。 a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c 的余數(shù)。19余數(shù)、同余與周

19、期一、同余的定義: 若兩個整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。 已知三個整數(shù)a、b、m如果m|a-b,就稱a、b對于模m同余,記作a=b(mod m),讀作 a同余于 b模 m二、同余的性質(zhì): 自身性: a=a(mod m); 對稱性:若 a= b(mod m),貝U b= a(mod m); 傳遞性:若 a= b(mod m),b=c(mod m),貝U a= c(mod m); 和差性:若 a= b(mod m),c=d(mod m),貝U a+c= b+d(mod m),a-c = b- d(mod m); 相乘性:若 a= b(mod m), c= d(mod m),貝

20、U axc= b xd(mod m); 乘方性:若 a= b(mod m),貝U an三 bn(mod m); 同倍性:若 a= b(mod m),整數(shù) c,貝U ax c= b x c(mod mx c);三、關(guān)于乘方的預(yù)備知識: 若 A=ax b,貝U MA=Mx b= (Ma b 若 B=c+d則 MB=Mc+d=MfcMd四、被3、9、11除后的余數(shù)特征: 一個自然數(shù)M, n表示M的各個數(shù)位上數(shù)字的和,則 Mn(mod 9)或(mod3); 一個自然數(shù)M, X表示M的各個奇數(shù)位上數(shù)字的和,丫表示M的各個偶數(shù)數(shù)位上數(shù)字的和,貝U 加 Y-X或 加11- (X-Y) (mod 11);五、

21、費爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則即-1 = 1(mod p)。20. 分數(shù)與百分數(shù)的應(yīng)用基本概念與性質(zhì):分數(shù):把單位“ T平均分成幾份,表示這樣的一份或幾份的數(shù)。分數(shù)的性質(zhì):分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。分數(shù)單位:把單位“ 1”平均分成幾份,表示這樣一份的數(shù)。百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。常用方法: 逆向思維方法:從題目提供條件的反方向(或結(jié)果)進行思考。 對應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對應(yīng)關(guān)系。 轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進行解答。最常見的是轉(zhuǎn) 換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;

22、把不同的標準(在分數(shù)中一般指的是一倍量)下 的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。 假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者 假設(shè)某種情況成立,計算出相應(yīng)的結(jié)果,然后再進行調(diào)整,求出最后結(jié)果。 量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。 替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。 同倍率法:總量和分量之間按照同分率變

23、化的規(guī)律進行處理。 濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。21. 分數(shù)大小的比較基本方法:通分分子法:使所有分數(shù)的分子相同,根據(jù)同分子分數(shù)大小和分母的關(guān)系比較通分分母法:使所有分數(shù)的分母相同,根據(jù)同分母分數(shù)大小和分子的關(guān)系比較。 基準數(shù)法:確定一個標準,使所有的分數(shù)都和它進行比較。 分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數(shù) 值越大。 倍率比較法:當比較兩個分子或分母同時變化時分數(shù)的大小,除了運用以上 方法外,可以用同倍率的變化關(guān)系比較分數(shù)的大小。(具體運用見同倍率變化 規(guī)律) 轉(zhuǎn)化比較方法:把所有分數(shù)轉(zhuǎn)化成小數(shù)(求出分數(shù)的值)后進行比較。倍數(shù)比較法:用一個

24、數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進行比較。大小比較法:用一個分數(shù)減去另一個分數(shù),得出的數(shù)和0比較。倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小?;鶞蕯?shù)比較法:確定一個基準數(shù),每一個數(shù)與基準數(shù)比較22 分數(shù)拆分一、將一個分數(shù)單位分解成兩個分數(shù)之和的公式:=+ ;=+ (d為自然數(shù));23.完全平方數(shù)完全平方數(shù)特征:1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。2. 除以3余0或余1;反之不成立。3. 除以4余0或余1;反之不成立。4. 約數(shù)個數(shù)為奇數(shù);反之成立。5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6. 奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。7. 兩個相臨整數(shù)的平方

25、之間不可能再有平方數(shù)。平方差公式:X2-Y2=( X-Y)( X+Y完全平方和公式:(X+Y 2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y224 比和比例比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫 比的后項。比值:比的前項除以后項的商,叫做比值。比的性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個比相等的式子叫做比例。a:b=c:d或比例的性質(zhì):兩個外項積等于兩個內(nèi)項積(交叉相乘),ad=bc。正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A 與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或

26、擴大幾倍(AB的積不變時),則A 與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。按比例分配:把幾個數(shù)按一定比例分成幾份,叫按比例分配。25 綜合行程基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三 者之間的關(guān)系基本公式:路程=速度X時間;路程十時間=速度;路程十速度=時間關(guān)鍵問題:確定運動過程中的位置和方向。相遇問題:速度和X相遇時間=相遇路程(請寫出其他公式)追及問題:追及時間二路程差十速度差(寫出其他公式)流水問題:順水行程=(船速+水速)X順水時間逆水行程=(船速-水速)X逆水時間順水速度=船速+水速逆水速度=船速-水速靜水速度=(順水速度+ 逆水速度)* 2

27、水速=(順水速度-逆水速度)* 2流水問題:關(guān)鍵是確定物體所運動的速度,參照以上公式。過橋問題:關(guān)鍵是確定物體所運動的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、 速度(速度和、速度差)中任意兩個量,求第三個量。26. 工程問題基本公式: 工作總量=工作效率X工作時間 工作效率=工作總量十工作時間 工作時間=工作總量十工作效率基本思路: 假設(shè)工作總量為“ 1”(和總工作量無關(guān)); 假設(shè)一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公 倍數(shù)),利用上述三個基本關(guān)系,可以簡單地表示出工作效率及工作時間 關(guān)鍵問題:確定工作量、工作時間、工作效率間的兩兩對應(yīng)關(guān)系。經(jīng)驗簡評:合久必分,分久必合。27. 邏輯推理基本方法簡介: 條件分析一假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個假設(shè)去判斷, 如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反 情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么 a 一定是奇數(shù)。 條件分析一列表法:當題設(shè)條件比較多,需要多次假設(shè)才能完成時,就需要 進行列表來輔助分析。列表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論