版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯Welding Simulation of Cast Aluminium A356X-T. Pham*, P. Gougeon and F-O. GagnonAluminium Technology Centre, National Research Council Canada Chicoutimi, Quebec, CanadaAbstractWelding of cast aluminium hollow parts is a new promising technical trend for structural assemblies
2、. However, big gap between components, weld porosity, large distortion and risk for hot cracking need to be dealt with. In this paper, the MIG welding of aluminium A356 cast square tubes is studied. The distortion of the welded tubes was predicted by numerical simulations. A good agreement between e
3、xperimental and numerical results was obtained.IntroductionAluminium structures become more and more popular in industries thanks to their light weights, especially in the automotive manufacturing industry. Moreover, welding of cast aluminium hollow parts is a new promising technical trend for struc
4、tural assemblies 1-3. However, it may be very challenging due to many problems such as big gap between components, weld porosity, large distortion and risk for hot cracking 4,5. Due to local heating, complex thermal stresses occur during welding; residual stress and distortion result after welding.
5、In this paper, the aluminium A356 cast tube MIG welding is studied. The software Sysweld 6 was used for welding simulations. The objective is to validate the capability of this software in predicting the distortion of the welded tubes in the presence of large gaps. In this work, the porosity of weld
6、s was checked after welding using the X-ray technique. The heat source parameters were identified based on the weld cross-sections and welding parameters. Full 3D thermal metallurgical mechanical simulations were performed. The distortions predicted by the numerical simulations were compared to expe
7、rimental results measured after welding by a CMM machine.ExperimentsExperimental setupTwo square tubes are made of A356 by sand casting and then machined. They are assembled by four MIG welds, named W1 to W4. Their dimensions and the welding configuration are depicted in Figure 1. Both small (inner)
8、 and large (outer) tubes are well positioned on a fixture using v-blocks as shown in Figure 2. The dimensions of the tubes make a peripheral gap of 1 mm between them. This fixture is fixed on a positioner that allows the welding process to be carried out always in the horizontal大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文
9、)外文翻譯position. The length of each weld is of 35 mm. The Fronius welding head, which is mounted on a Motoman robot, was used for the MIG welding process. Table 1 indicates the parameters of the welding process for this welding configuration.a)b)Figure 1: Tube welding configuration: a) cross-section v
10、iew, b) tube dimensions大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯Figure 2: Experimental setup for tube weldingTestingThe porosity of welds was observed before and after welding using the X-ray technique to check the quality of these welds according to the standard ASTM E155. The whole welded tubes were then tested
11、by traction on a MTS testing machine. The final dimensions of the welded tubes are measured on a CMM machine at many points on the tubes. The distortion of the welded tubes is determined by comparing the final positions with the initial positions of the tubes.Numerical analysisIn Sysweld, a welding
12、analysis is performed based on a weak-coupling formulation between the heat transfer and mechanical problems. Only the thermal history will affect on the mechanical properties, but not in reverse direction. Therefore, a thermal metallurgical mechanical analysis is divided into two steps. The first s
13、tep is a thermal metallurgical analysis, in which the heat transferred from the welding source makes phase changes during the welding process. The results of temperature and phase changes from the first step are then used as input for the second analysis. It is a pure thermo-elasto-plastic simulatio
14、n 6.Heat source model identificationBefore running a welding simulation, it is necessary to determine the parameters of the heat source model. This is called heat source fitting. Actually, it is a thermal simulation using this heat source model in the steady state, which iscombined with an大連交通大學(xué)2011
15、屆本科生畢業(yè)設(shè)計(論文)外文翻譯optimization tool to obtain the parameters of the heat source. Figure 3 presents the form of a 3D conical heat source of which the energy distribution is described in Eq(1) as follows:F=Q0exp(-r²/r0²) (1)in which Q0 denotes the power density; and r,r0 are defined byr²=
16、(x-x0)²+(x-x0-vt)² (2)andr0=re-(re-ri)(ze-z+z0)/(ze-zi) (3)where(x0,y0,z0)is the origin of the local coordinate system of the heat source; re and ri the radius of the heat source at the positions ze and zi,respectively;v the welding speed and t the time.In this study, a metallographic cros
17、s-section has been used to identify the heat source parameters as shown in Figure 4. The use of a 3D conical heat source fits very well the weld cross-section. The mesh size in the cross-section is around 0.5 mm for this case. The finer is the mesh, the more accurate is the shape of the melting pool
18、, but the longer is the simulation.Figure 3: 3D conical heat source (Sysweld).大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯a)b)Figure 4: (a) Metallographic cross-section, (b) Melting pool cross-section.Analysis modelThe mesh of the tubes was created in Hypermesh 7.0. Sysweld 2007 has been used as solver and pre/post p
19、rocessor. A full 3D thermal metallurgical mechanical analysis with brick and prism elements. Two welding sequences have been done such as W1/W2/W3/W4 and W1/W3/W2/W4. The tubes are clamped using four v-blocks during the welding, two for each tube. In the simulations, the positions where the tubes ar
20、e in contact against the surfaces of the v-blocks are considered as fixed conditions (i.e. Ux = Uy = Uz = 0). In the release phase, the tubes are free from the v-blocks.ResultsThe distortion of the welded tube is measured when it is released from the大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯constraints. The distort
21、ion is determined by measuring the displacement of the small tube on the top and lateral surfaces along the centre line of the tube. These measures are relative to the large tube. Figures 5a-b depict the distortion predicted by the numerical simulations of the sequence W1/W2/W3/W4 and W1/W3/2/W4, re
22、spectively. Good agreements between experimental and numerical results were obtained in the two welding sequences as indicated in Tables 2-3, in both the distortion tendency and distortion range of the process variation.a)b)大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯Figure 5: Tube distortion (Norm U): (a) Sequence W
23、1/W2/W3/W4, (b) SequenceW1/W3/W2/W4.a)b)Figure 7: State of stresses Sxy (a) Clamped, (b) Released. (Red = positive, Blue = negative)大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯a)b)Figure 8: State of stresses Sxz (a) Clamped, (b) Released. (Red = positive, Blue = negative) Figures 6-8 shows the state of the stresses o
24、f the welded tubes at room temperature for the sequence W1/W2/W3/W4 after welding when clampled and released from constraints (x is the direction along the axe of the welded tube). To show how the welded tube is distorted, positive-negative values are used instead of the true values of stresses. The
25、 distortion of the welded tube can be explained as the new equilibrium position due to the residual stresses when there is no external load. It is remarked that in the presence of large gaps, the distortion of the welded tube is very大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯likely in the rotational mode around loca
26、l welds.ConclusionsThe MIG welding is very good for assembling aluminium cast tubes (hollow parts) in the presence of large gaps.The 3D thermal metallurgical mechanical simulation of the cast tube welding using Sysweld has been validated. A very good agreement between numerical and experimental resu
27、lts was obtained for both the distortion tendency and distortion range.The welding sequence has a major influence on the distortion of the welded structure. It turns out that the optimization of the welding sequences for a reasonable distortion of a welded structure with a large number of welds beco
28、mes very important.AcknowledgmentsThe authors would like to thank gratefully Rio Tinto Alcan and General Motor for financial and technical supports, particularly Martin Fortier and Pei-Chung Wang. Also, the authors are grateful to Welding Team at ATC (Audrey Boily, Martin Larouche, François Nad
29、eau and Mario Patry) for experimental works.References1. K-H. Von Zengen, Aluminium in future cars A challenge for materials science, Materials Science Forum, 519-521 (Part 2), 1201-1208 (2006).2. S. Wiesner S., M. Rethmeier and H. Wohlfart, MIG and laser welding of aluminium alloy pressure die cast
30、 parts with wrought profiles, Welding International, 19 (2), 130-133 (2005).3. R. Akhter, L. Ivanchev, C.V.Rooyen, P. Kazadi and H.P. Burger, Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology, Solid State Phenomena, 116-117, 173-176 (2006).4. J.F. Lancaster, Metallur
31、gy of welding, Abington Publishing (1999).5. . Grong, Metallurgical modelling of welding, The institute of materials (1997).6. Sysweld, Sysweld reference manual, ESI Group (2005).大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯譯文鑄造A356鋁合金的焊接模擬X-T. Pham*, P. Gougeon and F-O. GagnonAluminium Technology Centre, National Res
32、earch Council Canada Chicoutimi, Quebec, Canada摘要:空心鋁鑄造件的焊接是一個很有前途的新結(jié)構(gòu)組件技術(shù)的趨勢。然而,組件之間的差距較大,焊接孔隙度,大變形和熱裂需要處理的風(fēng)險。在這篇文章中,對鑄造A356鋁合金的方管的MIG焊接進(jìn)行了研究。并對焊接管彎曲變形進(jìn)行了數(shù)值模擬預(yù)測。實(shí)驗(yàn)結(jié)果和數(shù)值模擬結(jié)果的相似度很高。1前言:由于鋁合金結(jié)構(gòu)自身的重量輕,所以它變得越來越流行,尤其是在汽車制造業(yè)。此外,空心鋁鑄造件的焊接是一種新的有前途的結(jié)構(gòu)組件技術(shù)的趨勢1-3。但是它可能有很大的挑戰(zhàn),由于大的差距,例如組件之間,焊接孔隙度,大變形和熱裂的危險等很多問題4
33、,5。由于局部加熱,復(fù)雜的熱應(yīng)力發(fā)生在焊接中;焊后會出現(xiàn)殘余應(yīng)力和變形的結(jié)果。在這篇文章中,關(guān)于鑄造A356鋁合金的方管的MIG焊接進(jìn)行了研究。Sysweld軟件6被用于焊接模擬。其目的是驗(yàn)證這個軟件在大差距的焊接管扭曲變形的預(yù)測中的能力。在這項(xiàng)工作中,在焊接后利用X射線技術(shù)來檢查焊縫的孔隙率。在熱源參數(shù)的基礎(chǔ)上,確定了焊縫截面和焊接參數(shù)。冶金力學(xué)的3D熱量模擬已經(jīng)被使用。用數(shù)值模擬所預(yù)測出來的扭曲值與焊后用CCM機(jī)器所測量的實(shí)驗(yàn)結(jié)果進(jìn)行了比較。2實(shí)驗(yàn):2.1實(shí)驗(yàn)方案兩個成直角的管子是用A356通過砂型鑄造然后在加工形成的。他們是由四個管MIG焊接組裝而成 ,命名為W1至W4。他們的尺寸和焊接
34、配置描繪如圖1.不論小還是大的管子都很好的定位在一個采用V形塊的夾具上,如圖2所示。管子的規(guī)模使它們之間產(chǎn)生了一個1毫米厚的不主要的縫隙。這個夾具固定在一個定位上,使焊接過程中總是保持水平位置。每個焊縫的長度是35毫米。被安裝在Motoman機(jī)器人上的Fronius焊頭是用于MIG焊過程中的。表1表明了這個焊接結(jié)構(gòu)的焊接工藝參數(shù)。大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯表1:MIG焊接參數(shù)a)b)圖1:鋼管焊接配置:a)截面圖 b)鋼管尺寸大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯圖2:管焊接實(shí)驗(yàn)裝置2.2測試焊接前后利用X射線技術(shù)觀察焊縫氣孔,按ASTM E155標(biāo)準(zhǔn)檢
35、查這些焊縫質(zhì)量。然后整個焊接管子通過一個MTS試驗(yàn)機(jī)上的牽引來測試。焊接管最終的尺寸被定位在管子上的多個點(diǎn)的CMM機(jī)器所測量。扭曲的焊接管的最終位置與初始位置的管子進(jìn)行比較。3數(shù)值分析在Sysweld軟件中,焊接分析是基于熱傳導(dǎo)和力學(xué)問題之間的微弱鏈接而制定的。只有熱學(xué)經(jīng)歷在相同方向上才將影響力學(xué)性能 。因此,熱學(xué)冶金力學(xué)分析分為兩個步驟。第一步是一種熱學(xué)冶金分析,其中在焊接過程的相變過程中從焊接電源的熱量被轉(zhuǎn)移。第一步溫度和相變的結(jié)果將作為第二次的分析。它是一個純熱彈塑性模擬6。4熱源模型的鑒定焊接模擬運(yùn)行之前,有必要確定熱源模型的參數(shù)。這就是所謂的熱源配件。實(shí)際上,它是一種熱模擬中的穩(wěn)定狀
36、態(tài),在這種穩(wěn)定狀態(tài)中用一種優(yōu)化工具來獲得的熱量來源的參數(shù)。圖3給出了一個三維錐形熱源形式,它的能量分布在方程中描述:舉例如下:F=Q0exp(-r²/r0²) (1)其中Q0 表示功率密度; r,r0 被定義為:大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯r²=(x-x0)²+(x-x0-vt)² (2)和r0=re-(re-ri)(ze-z+z0)/(ze-zi) (3)其中(x0,y0,z0)是局部坐標(biāo)系原點(diǎn)熱源,re和 ri 在位置ze 和zi,分別為半徑熱源;v為焊接速度,t為時間。在這項(xiàng)研究中,金相截面已被用來確定熱源,如圖4
37、所示的參數(shù)。一個三維錐形熱源使用非常適合的焊接橫截面。在橫截面的網(wǎng)狀尺寸是這種情況下約為0.5毫米。越細(xì)的網(wǎng)狀,越是更準(zhǔn)確的熔池形狀,但不再是模擬。圖3:三維錐形熱源 (Sysweld).大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯a)b)圖4: (a) 金相截面(b) 熔池截面5模型分析在Hypermesh7.0上創(chuàng)建了管網(wǎng)。Sysweld2007已被用來作為求解器和前后處理器。一個完整的三維熱學(xué)冶金力學(xué)分析用磚和棱鏡為元素。兩種焊接序列已完成,如W1/W2/W3/W4和W1/W3/W2/W4。在焊接過程中,夾住管子的過程中使用四個V形塊,每個管子兩個。在模擬中,管子的立場是反對接觸
38、的V形塊的表面被認(rèn)為是固定的條件(如Ux = Uy = Uz = 0)。在釋放階段,管子在V形塊中是不受力的。6結(jié)果大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯當(dāng)焊接管子從束縛狀態(tài)被釋放時,它的變形被控制。失真是通過測量沿管子的中心線從頂部到兩側(cè)面的小管的位移。這些措施是相對于大管的。圖5a,b的描述失真通過數(shù)值模擬預(yù)測序列為W1/W2/W3/W4和W1/W3/W2/W4。在數(shù)值計算結(jié)果和實(shí)驗(yàn)中獲得了良好的協(xié)議的兩種焊接順序如表2-3所示,在這兩種傾向的扭曲和變形的過程中變化的范圍。a)b)大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯圖5:電子管失真(標(biāo)準(zhǔn)U):(a)序列W1/
39、W2/W3/W4,(b)序列W1/W3/W2/W4表2:扭曲結(jié)果的比較(焊接順序W1/W2/W3/W4)表2:畸變結(jié)果比較(焊接順序W1/W2/W3/W4)a)大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯b)圖6:規(guī)定壓力 Sxx (a)夾緊(b)放松(紅=正,藍(lán)=負(fù))a)大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯b)圖7:規(guī)定壓力 Sxy (a)夾緊(b)放松(紅=正,藍(lán)=負(fù))a)大連交通大學(xué)2011屆本科生畢業(yè)設(shè)計(論文)外文翻譯b)圖8:規(guī)定壓力 Sxz (a)夾緊(b)放松(紅=正,藍(lán)=負(fù))圖6-8顯示了在夾緊和放松后的焊接在室溫的規(guī)定壓力下焊接序列W1/W2/W3/W4的狀態(tài)(x是沿焊接管斧頭方向)。以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年八年級統(tǒng)編版語文寒假預(yù)習(xí) 第05講 《莊子》二則
- 【全程復(fù)習(xí)方略】2020年數(shù)學(xué)文(廣西用)課時作業(yè):第六章-第四節(jié)含絕對值的不等式
- 【2021屆備考】2020全國名校物理試題分類解析匯編(11月第二期)D5-萬有引力與天體運(yùn)動
- 【創(chuàng)新設(shè)計】2021高考英語(四川專用)二輪復(fù)習(xí)-第4部分-閱讀理解解答技巧-專題1-
- 《精準(zhǔn)醫(yī)療》課件
- 2021杭州市高考英語閱讀理解、完形填空小練(2)答案(四月)
- 【2021屆備考】2020全國名?;瘜W(xué)試題分類解析匯編(11月第二期):N-單元物質(zhì)結(jié)構(gòu)與性質(zhì)
- 五年級數(shù)學(xué)(小數(shù)四則混合運(yùn)算)計算題專項(xiàng)練習(xí)及答案
- 【2021屆備考】2020全國名校物理試題分類解析匯編(11月第二期)L2-法拉第電磁感應(yīng)定律
- M2工藝部周工作總結(jié)Week
- 生產(chǎn)車間環(huán)境改善方案
- 2024年高考物理真題分類匯編(全一本附答案)
- 2024-2025年上海中考英語真題及答案解析
- 新疆喀什地區(qū)巴楚縣2023-2024學(xué)年九年級上學(xué)期1月期末化學(xué)試題
- 供應(yīng)商可持續(xù)發(fā)展計劃
- 方案所需費(fèi)用測算
- 《吉利集團(tuán)財務(wù)共享中心的優(yōu)化研究》11000字
- 生姜的產(chǎn)地分布
- 普通高中學(xué)業(yè)水平合格性考試(會考)語文試題(附答案)
- 統(tǒng)編語文八上文言文過關(guān)小測驗(yàn)-《愚公移山》
- 12、口腔科診療指南及技術(shù)操作規(guī)范
評論
0/150
提交評論