![2023新教材數(shù)學(xué)高考第一輪專題練習(xí)--專題三指數(shù)與指數(shù)函數(shù)專題檢測題組_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/13/a6c5f06f-e565-4656-9757-cd343d1bc20d/a6c5f06f-e565-4656-9757-cd343d1bc20d1.gif)
![2023新教材數(shù)學(xué)高考第一輪專題練習(xí)--專題三指數(shù)與指數(shù)函數(shù)專題檢測題組_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/13/a6c5f06f-e565-4656-9757-cd343d1bc20d/a6c5f06f-e565-4656-9757-cd343d1bc20d2.gif)
![2023新教材數(shù)學(xué)高考第一輪專題練習(xí)--專題三指數(shù)與指數(shù)函數(shù)專題檢測題組_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/13/a6c5f06f-e565-4656-9757-cd343d1bc20d/a6c5f06f-e565-4656-9757-cd343d1bc20d3.gif)
![2023新教材數(shù)學(xué)高考第一輪專題練習(xí)--專題三指數(shù)與指數(shù)函數(shù)專題檢測題組_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/13/a6c5f06f-e565-4656-9757-cd343d1bc20d/a6c5f06f-e565-4656-9757-cd343d1bc20d4.gif)
![2023新教材數(shù)學(xué)高考第一輪專題練習(xí)--專題三指數(shù)與指數(shù)函數(shù)專題檢測題組_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/13/a6c5f06f-e565-4656-9757-cd343d1bc20d/a6c5f06f-e565-4656-9757-cd343d1bc20d5.gif)
2023新教材數(shù)學(xué)高考第一輪專題練習(xí)--專題三指數(shù)與指數(shù)函數(shù)專題檢測題組.docx 免費下載
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2023新高考數(shù)學(xué)第一輪專題練習(xí)3.3指數(shù)與指數(shù)函數(shù)一、選擇題1.(2020成都嘉祥外國語學(xué)??荚?3)已知ab=-5,則a-ba+b-ab的值是()A.25B.0C.-25D.25答案Bab=-5,a與b異號,a-ba+b-ab=a-aba2+b-abb2=a5a2+b5b2=a5|a|+b5|b|=0,故選B.2.(2022屆河南名校聯(lián)盟11月月考,9)函數(shù)f(x)的定義域為D,若對于任意x1、x2D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則函數(shù)f(x)的圖象關(guān)于點(a,b)中心對稱.已知函數(shù)f(x)=23x3x+3,則f12 022+f22 022+f32 022+f2
2、 0212 022的值為()A.4 042B.2 0213C.2 022D.2 021答案D因為f(x)+f(1-x)=23x3x+3+231-x31-x+3=23x3x+3+33+33x=23x3x+3+33+3x=2,所以由題意可得當(dāng)x1+x2=1時,恒有f(x1)+f(x2)=2.令S=f12 022+f22 022+f32 022+f2 0212 022,則S=f2 0212 022+f2 0202 022+f2 0192 022+f12 022,兩式相加得2S=2 0212,所以S=2 021.故選D.3.(2017北京,5,5分)已知函數(shù)f(x)=3x-13x,則f(x)()A.是
3、偶函數(shù),且在R上是增函數(shù)B.是奇函數(shù),且在R上是增函數(shù)C.是偶函數(shù),且在R上是減函數(shù)D.是奇函數(shù),且在R上是減函數(shù)答案B易知函數(shù)f(x)的定義域為R,f(-x)=3-x-13-x=13x-3x=-f(x),f(x)為奇函數(shù),又y=3x在R上為增函數(shù),y=-13x在R上為增函數(shù),f(x)=3x-13x在R上是增函數(shù).故選B.4.(2022屆安徽安慶月考,4)已知函數(shù)f(x)=e|x|,記a=f(log23),b=flog312,c=f(2.11.2),則a,b,c的大小關(guān)系為()A.abcB.bacC.cbaD.bc0時,f(x)=ex,f(x)在(0,+)上單調(diào)遞增,2=log24log23l
4、og22=1,0log322.11=2.12,2.11.2log23log320,則f(2.11.2)f(log23)f(log32),又flog312=f(-log32)=f(log32),f(2.11.2)f(log23)flog312,即ba0,則()A.m+n0B.m+n0D.m-n0,所以f(m)-f(n)=f(-n),所以m-n,所以m+n0.思路分析先判斷f(x)是定義域R上的奇函數(shù),且是增函數(shù),再由f(m)+f(n)0得出m-n,即可得出結(jié)論.6.(2021鄭州模擬,4)已知函數(shù)f(x)=ax3-bx+1,若f(2)=5,則f(-2)=()A.-5B.-3C.3D.5答案Bf(
5、x)=ax3-bx+1,xR,則f(-x)=a(-x)3-b(-x)+1=-ax3+bx+1,則f(x)+f(-x)=2,則有f(2)+f(-2)=2,而f(2)=5,所以f(-2)=-3,故選B.解題關(guān)鍵根據(jù)題意,求出f(-x)的表達(dá)式,進(jìn)而可得f(x)+f(-x)=2,由f(2)的值計算可得答案.7.(2021四川南充第二次適應(yīng)性模擬,10)定義在R上的函數(shù)f(x)=-3|x+m|+2為偶函數(shù),a=flog212,b=f 1213,c=f(m),則()A.cabB.acbC.abcD.bac答案C根據(jù)函數(shù)f(x)=-3|x+m|+2為偶函數(shù),得f(-x)=f(x),即-3|-x+m|+2=
6、-3|x+m|+2,變形可得|-x+m|=|x+m|,必有m=0.則f(x)=-3|x|+2, f(x)在0,+)上單調(diào)遞減,a=flog212=f(-1)=f(1),b=f1213=f312,c=f(m)=f(0),則有abx21時, f(x)單調(diào)遞增,則關(guān)于a的不等式f(9a+1)f(3a-5)的解集為()A.(-,1)B.(-,log32)C.(log32,1)D.(1,+)答案B因為y=f(x+1)為偶函數(shù),所以f(-x+1)=f(x+1),得函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱.因為y=f(x)在1,+)上為增函數(shù),所以函數(shù)y=f(x)在(-,1上為減函數(shù).不等式f(9a+1)f
7、(3a-5)等價于|9a+1-1|9a3a-69a或3a-60),得t2-t+60或t2+t-60.解得0t2,即03a2,所以a0時,g(x)=2xex,g(x)=2-2xex=2(1-x)ex,故g(x)=2xex(x0)的單調(diào)增區(qū)間為(0,1),單調(diào)減區(qū)間為(1,+),所以g(x)max=g(1)=2e,所以f(x)的最大值與最小值之差為4e.故選B.10.(2020陜西安康月考,12)設(shè)函數(shù)f(x)的定義域為D,若滿足:f(x)在D內(nèi)是單調(diào)增函數(shù);存在m,nD(nm),使得f(x)在m,n上的值域為m,n,那么就稱y=f(x)是定義域為D的“成功函數(shù)”.若函數(shù)g(x)=loga(a2x
8、+t)(a0且a1)是定義域為R的“成功函數(shù)”,則t的取值范圍是()A.t|0t14B.t|0t14C.t|t14答案A因為g(x)=loga(a2x+t)(a0且a1)是定義域為R的“成功函數(shù)”,所以g(x)為增函數(shù),且g(x)在m,n上的值域為m,n,故g(m)=m,g(n)=n,即g(x)=x有兩個不相同的實數(shù)根.loga(a2x+t)=x,即a2x-ax+t=0.令s=ax,s0,即s2-s+t=0有兩個不同的正數(shù)根,可得t0,=1-4t0.解得0t0,且a1)的圖象過定點P,則P點坐標(biāo)為.答案(-1,2)解析由于函數(shù)y=ax(a0,且a1)的圖象過定點(0,1),所以令x+1=0,可
9、得x=-1, f(-1)=2,故函數(shù)f(x)=ax+1+1(a0,且a1)的圖象過定點(-1,2).12.(2019北京,13,5分)設(shè)函數(shù)f(x)=ex+ae-x(a為常數(shù)).若f(x)為奇函數(shù),則a=;若f(x)是R上的增函數(shù),則a的取值范圍是.答案-1;(-,0解析f(x)=ex+ae-x為奇函數(shù),f(-x)+f(x)=0,即e-x+aex+ex+ae-x=0,(a+1)(ex+e-x)=0,a=-1.f(x)是R上的增函數(shù),f (x)0恒成立,ex-ae-x0,即e2x-a0,ae2x,又e2x0,a0.當(dāng)a=0時, f(x)=ex是增函數(shù),滿足題意,故a0.13.(2021安徽阜陽太
10、和一中月考,16)下列說法中,正確的是(填序號).任取x0,均有3x2x;當(dāng)a0,且a1時,有a3a2;y=(3)-x是增函數(shù);y=2|x|的最小值為1;在同一坐標(biāo)系中,y=2x與y=2-x的圖象關(guān)于y軸對稱.答案解析對于,當(dāng)0a1時,a3a2,故不正確.對于,y=(3)-x=33x,因為0331,故y=(3)-x是減函數(shù),故不正確.易知正確.14.(2022屆長春月考,16)函數(shù)y=2-x2+2的值域為.答案(0,4解析由于y=-x2+22,且y=2x在R上單調(diào)遞增,故02-x2+24.即函數(shù)的值域為(0,4.15.(2022屆合肥聯(lián)考,16)已知函數(shù)f(x)=|4x-3|+2,若函數(shù)g(x)=f(x)2-3mf(x)+2m2+m-1有4個零點,則m的取值范圍是.答案32,2(2,3)解析令f(x)2-3mf(x)+2m2+m-1=0,解得f(x)=2m-1或f(x)=m+1.f(x)的圖象如圖所示,只需22m-15,21+mloga(x+2).解析(1)由f(x)是指數(shù)函數(shù)得a2-3a+3=1,a0且a1,解得a=2或a=1(舍去),f(x)=2x.(2)F(x)為奇函數(shù).證明:F(x)=2x-2-x,定義域為R,則F(-x)=2-x-2x=-(2x-2-x)=-F(x),F(x)是奇函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中歷史 第一單元 古代中國經(jīng)濟(jì)的基本結(jié)構(gòu)與特點 第1課 發(fā)達(dá)的古代農(nóng)業(yè)新課說課稿1 新人教版必修2
- Unit 4 There are seven days in a week. Lesson 19(說課稿)-2023-2024學(xué)年人教精通版英語四年級下冊
- Unit 1 Teenage Life Listening and Speaking 說課稿 -2024-2025學(xué)年高中英語人教版2019 必修第一冊001
- 2024年春七年級語文下冊 第3單元 10 老王說課稿 新人教版
- Unit 5 Working the Land Reading and thinking 說課稿-2024-2025學(xué)年高二英語人教版(2019)選擇性必修第一冊
- 農(nóng)田整改合同范本
- 作品出版合同范例
- 鄭州水泥化糞池施工方案
- 關(guān)于活動執(zhí)行合同范本
- 加盟區(qū)域保護(hù)合同范例
- 測繪工程產(chǎn)品價格表匯編
- 拘留所教育課件02
- 語言和語言學(xué)課件
- 《工作場所安全使用化學(xué)品規(guī)定》
- 裝飾圖案設(shè)計-裝飾圖案的形式課件
- 2022年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)考試筆試試題及答案解析
- 護(hù)理學(xué)基礎(chǔ)教案導(dǎo)尿術(shù)catheterization
- ICU護(hù)理工作流程
- 廣東版高中信息技術(shù)教案(全套)
- 市政工程設(shè)施養(yǎng)護(hù)維修估算指標(biāo)
- 分布式光伏屋頂調(diào)查表
評論
0/150
提交評論