下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、棗莊三中20082009學(xué)年度下學(xué)期高二年級(jí) 數(shù)學(xué)學(xué)科選修2-3教學(xué)案 編號(hào) § 2.2.3獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布組編人白永慶 審核人 趙廣華 使用時(shí)間 2009.4.29 姓名 班級(jí)學(xué)號(hào) 一、【學(xué)習(xí)目標(biāo)】知識(shí)與技能:理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解答一些簡(jiǎn)單的實(shí)際問(wèn)題。過(guò)程與方法:能進(jìn)行一些與n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布有關(guān)的概率的計(jì)算。情感、態(tài)度與價(jià)值觀(guān):承前啟后,感悟數(shù)學(xué)與生活的和諧之美 ,體現(xiàn)數(shù)學(xué)的文化功能與人文價(jià)值。二、【學(xué)習(xí)重點(diǎn)】理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解答一些簡(jiǎn)單的實(shí)際問(wèn)題?!緦W(xué)習(xí)難點(diǎn)】能進(jìn)行一些與n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布有關(guān)的
2、概率的計(jì)算。三、【教學(xué)過(guò)程】一、復(fù)習(xí)引入:1相互獨(dú)立事件:事件(或)是否發(fā)生對(duì)事件(或)發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。若與是相互獨(dú)立事件,則與,與,與也相互獨(dú)立。2相互獨(dú)立事件同時(shí)發(fā)生的概率:一般地,如果事件相互獨(dú)立,那么這個(gè)事件同時(shí)發(fā)生的概率,等于每個(gè)事件發(fā)生的概率的積, .二、講解新課:1.獨(dú)立重復(fù)試驗(yàn)的定義:指在同樣條件下進(jìn)行的,各次之間相互獨(dú)立的一種試驗(yàn)2.獨(dú)立重復(fù)試驗(yàn)的概率公式:一般地,如果在1次試驗(yàn)中某事件發(fā)生的概率是,那么在次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生次的概率它是展開(kāi)式的第項(xiàng)3.離散型隨機(jī)變量的二項(xiàng)分布:在一次隨機(jī)試驗(yàn)中,某事件可能發(fā)生也可能不發(fā)生,在n
3、次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件發(fā)生的次數(shù)是一個(gè)隨機(jī)變量如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率是,(k0,1,2,,n,)于是得到隨機(jī)變量的概率分布如下:01knP由于恰好是二項(xiàng)展開(kāi)式中的各項(xiàng)的值,所以稱(chēng)這樣的隨機(jī)變量服從二項(xiàng)分布(binomial distribution ),記作B(n,p),其中n,p為參數(shù),并記b(k;n,p)三、講解范例:例1某射手每次射擊擊中目標(biāo)的概率是0.8,求這名射手在 10 次射擊中,(1)恰有 8 次擊中目標(biāo)的概率;(2)至少有 8 次擊中目標(biāo)的概率(結(jié)果保留兩個(gè)有效數(shù)字) 解:設(shè)X為擊中目標(biāo)的次數(shù),則XB (10,
4、 0.8 ) . (1)在 10 次射擊中,恰有 8 次擊中目標(biāo)的概率為 P (X = 8 ) .(2)在 10 次射擊中,至少有 8 次擊中目標(biāo)的概率為 P (X8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 ) .例2(2000年高考題)某廠(chǎng)生產(chǎn)電子元件,其產(chǎn)品的次品率為5%現(xiàn)從一批產(chǎn)品中任意地連續(xù)取出2件,寫(xiě)出其中次品數(shù)的概率分布解:依題意,隨機(jī)變量B(2,5%)所以,P(=0)=(95%)=0.9025,P(=1)=(5%)(95%)=0.095,P()=(5%)=0.0025因此,次品數(shù)的概率分布是012P0.90250.0950.0025例3重復(fù)
5、拋擲一枚篩子5次得到點(diǎn)數(shù)為6的次數(shù)記為,求P(>3)解:依題意,隨機(jī)變量BP(=4)=,P(=5)= P(>3)=P(=4)+P(=5)= 例4某氣象站天氣預(yù)報(bào)的準(zhǔn)確率為,計(jì)算(結(jié)果保留兩個(gè)有效數(shù)字):(1)5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率;(2)5次預(yù)報(bào)中至少有4次準(zhǔn)確的概率解:(1)記“預(yù)報(bào)1次,結(jié)果準(zhǔn)確”為事件預(yù)報(bào)5次相當(dāng)于5次獨(dú)立重復(fù)試驗(yàn),根據(jù)次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生次的概率計(jì)算公式,5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率答:5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率約為0.41.(2)5次預(yù)報(bào)中至少有4次準(zhǔn)確的概率,就是5次預(yù)報(bào)中恰有4次準(zhǔn)確的概率與5次預(yù)報(bào)都準(zhǔn)確的概率的和,即 答:5次預(yù)報(bào)中
6、至少有4次準(zhǔn)確的概率約為0.74例5某車(chē)間的5臺(tái)機(jī)床在1小時(shí)內(nèi)需要工人照管的概率都是,求1小時(shí)內(nèi)5臺(tái)機(jī)床中至少2臺(tái)需要工人照管的概率是多少?(結(jié)果保留兩個(gè)有效數(shù)字)解:記事件“1小時(shí)內(nèi),1臺(tái)機(jī)器需要人照管”,1小時(shí)內(nèi)5臺(tái)機(jī)器需要照管相當(dāng)于5次獨(dú)立重復(fù)試驗(yàn)1小時(shí)內(nèi)5臺(tái)機(jī)床中沒(méi)有1臺(tái)需要工人照管的概率,1小時(shí)內(nèi)5臺(tái)機(jī)床中恰有1臺(tái)需要工人照管的概率,所以1小時(shí)內(nèi)5臺(tái)機(jī)床中至少2臺(tái)需要工人照管的概率為答:1小時(shí)內(nèi)5臺(tái)機(jī)床中至少2臺(tái)需要工人照管的概率約為點(diǎn)評(píng):“至多”,“至少”問(wèn)題往往考慮逆向思維法例6某人對(duì)一目標(biāo)進(jìn)行射擊,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少應(yīng)射擊幾次?解
7、:設(shè)要使至少命中1次的概率不小于0.75,應(yīng)射擊次記事件“射擊一次,擊中目標(biāo)”,則射擊次相當(dāng)于次獨(dú)立重復(fù)試驗(yàn),事件至少發(fā)生1次的概率為由題意,令,至少取5答:要使至少命中1次的概率不小于0.75,至少應(yīng)射擊5次例7十層電梯從低層到頂層停不少于3次的概率是多少?停幾次概率最大?解:依題意,從低層到頂層停不少于3次,應(yīng)包括停3次,停4次,停5次,直到停9次,從低層到頂層停不少于3次的概率設(shè)從低層到頂層停次,則其概率為,當(dāng)或時(shí),最大,即最大,答:從低層到頂層停不少于3次的概率為,停4次或5次概率最大例8實(shí)力相等的甲、乙兩隊(duì)參加乒乓球團(tuán)體比賽,規(guī)定5局3勝制(即5局內(nèi)誰(shuí)先贏3局就算勝出并停止比賽)(1
8、)試分別求甲打完3局、4局、5局才能取勝的概率;(2)按比賽規(guī)則甲獲勝的概率解:甲、乙兩隊(duì)實(shí)力相等,所以每局比賽甲獲勝的概率為,乙獲勝的概率為記事件=“甲打完3局才能取勝”,記事件=“甲打完4局才能取勝”,記事件=“甲打完5局才能取勝”甲打完3局取勝,相當(dāng)于進(jìn)行3次獨(dú)立重復(fù)試驗(yàn),且每局比賽甲均取勝甲打完3局取勝的概率為甲打完4局才能取勝,相當(dāng)于進(jìn)行4次獨(dú)立重復(fù)試驗(yàn),且甲第4局比賽取勝,前3局為2勝1負(fù)甲打完4局才能取勝的概率為甲打完5局才能取勝,相當(dāng)于進(jìn)行5次獨(dú)立重復(fù)試驗(yàn),且甲第5局比賽取勝,前4局恰好2勝2負(fù)甲打完5局才能取勝的概率為(2)事件“按比賽規(guī)則甲獲勝”,則,又因?yàn)槭录?、彼此互斥?/p>
9、故答:按比賽規(guī)則甲獲勝的概率為例9一批玉米種子,其發(fā)芽率是0.8.(1)問(wèn)每穴至少種幾粒,才能保證每穴至少有一粒發(fā)芽的概率大于?(2)若每穴種3粒,求恰好兩粒發(fā)芽的概率()解:記事件“種一粒種子,發(fā)芽”,則,(1)設(shè)每穴至少種粒,才能保證每穴至少有一粒發(fā)芽的概率大于每穴種粒相當(dāng)于次獨(dú)立重復(fù)試驗(yàn),記事件“每穴至少有一粒發(fā)芽”,則 由題意,令,所以,兩邊取常用對(duì)數(shù)得,即,且,所以取答:每穴至少種3粒,才能保證每穴至少有一粒發(fā)芽的概率大于(2)每穴種3粒相當(dāng)于3次獨(dú)立重復(fù)試驗(yàn),每穴種3粒,恰好兩粒發(fā)芽的概率為,答:每穴種3粒,恰好兩粒發(fā)芽的概率為0.384 四、課堂練習(xí): 1每次試驗(yàn)的成功率為,重復(fù)
10、進(jìn)行10次試驗(yàn),其中前7次都未成功后3次都成功的概率為( ) 210張獎(jiǎng)券中含有3張中獎(jiǎng)的獎(jiǎng)券,每人購(gòu)買(mǎi)1張,則前3個(gè)購(gòu)買(mǎi)者中,恰有一人中獎(jiǎng)的概率為( ) 3某人有5把鑰匙,其中有兩把房門(mén)鑰匙,但忘記了開(kāi)房門(mén)的是哪兩把,只好逐把試開(kāi),則此人在3次內(nèi)能開(kāi)房門(mén)的概率是 ( ) 4甲、乙兩隊(duì)參加乒乓球團(tuán)體比賽,甲隊(duì)與乙隊(duì)實(shí)力之比為,比賽時(shí)均能正常發(fā)揮技術(shù)水平,則在5局3勝制中,甲打完4局才勝的概率為( ) 5一射手命中10環(huán)的概率為0.7,命中9環(huán)的概率為0.3,則該射手打3發(fā)得到不少于29環(huán)的概率為 (設(shè)每次命中的環(huán)數(shù)都是自然數(shù))6一名籃球運(yùn)動(dòng)員投籃命中率為,在一次決賽中投10個(gè)球,則投中的球數(shù)不
11、少于9個(gè)的概率為 7一射手對(duì)同一目標(biāo)獨(dú)立地進(jìn)行4次射擊,已知至少命中一次的概率為,則此射手的命中率為 8某車(chē)間有5臺(tái)車(chē)床,每臺(tái)車(chē)床的停車(chē)或開(kāi)車(chē)是相互獨(dú)立的,若每臺(tái)車(chē)床在任一時(shí)刻處于停車(chē)狀態(tài)的概率為,求:(1)在任一時(shí)刻車(chē)間有3臺(tái)車(chē)床處于停車(chē)的概率;(2)至少有一臺(tái)處于停車(chē)的概率9種植某種樹(shù)苗,成活率為90%,現(xiàn)在種植這種樹(shù)苗5棵,試求:全部成活的概率; 全部死亡的概率;恰好成活3棵的概率; 至少成活4棵的概率10(1)設(shè)在四次獨(dú)立重復(fù)試驗(yàn)中,事件至少發(fā)生一次的概率為,試求在一次試驗(yàn)中事件發(fā)生的概率(2)某人向某個(gè)目標(biāo)射擊,直至擊中目標(biāo)為止,每次射擊擊中目標(biāo)的概率為,求在第次才擊中目標(biāo)的概率答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.046 7. 8.(1)(2)9.; ; ; 10.(1) (2) 五、小結(jié) :1獨(dú)立重復(fù)試驗(yàn)要從三方面考慮第一:每次試驗(yàn)是在同樣條件下進(jìn)行第二:各次試驗(yàn)中的事件是相互獨(dú)立的第三,每次試驗(yàn)都只有兩種結(jié)果,即事件要么發(fā)生,要么不發(fā)生2如果1次試驗(yàn)中某事件發(fā)生的概率是,那么次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生次的概率為對(duì)于此式可以這么理解:由于1次試驗(yàn)中事件要么發(fā)生,要么不發(fā)生,所以在次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次,則在另外的次中沒(méi)有發(fā)生,即發(fā)生,由,所以上面的公式恰為展開(kāi)式中的第項(xiàng),可見(jiàn)排列組合、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能家居音響系統(tǒng)與家裝室內(nèi)裝修合同9篇
- 二零二五版大理石瓷磚研發(fā)與銷(xiāo)售合作合同范本3篇
- 二零二五版民營(yíng)企業(yè)股權(quán)激勵(lì)合同書(shū)3篇
- 教育局教師幼兒園專(zhuān)項(xiàng)2025年度勞動(dòng)合同規(guī)范文本3篇
- 二零二五年銷(xiāo)售代理合同:汽車(chē)銷(xiāo)售代理及區(qū)域獨(dú)家合作協(xié)議2篇
- 2025年科技孵化器場(chǎng)地租賃保證金合同范本2篇
- 二零二五版39上公司兜底協(xié)議:綠色環(huán)保項(xiàng)目投資風(fēng)險(xiǎn)控制合同3篇
- 二零二五年度鋼箱梁橋工程施工廢棄物處理與回收利用合同3篇
- 二零二五版綠色建筑項(xiàng)目基礎(chǔ)勞務(wù)分包合同2篇
- 二零二五年度高速公路隧道防雷安全防護(hù)合同3篇
- Android移動(dòng)開(kāi)發(fā)基礎(chǔ)案例教程(第2版)完整全套教學(xué)課件
- 醫(yī)保DRGDIP付費(fèi)基礎(chǔ)知識(shí)醫(yī)院內(nèi)培訓(xùn)課件
- 專(zhuān)題12 工藝流程綜合題- 三年(2022-2024)高考化學(xué)真題分類(lèi)匯編(全國(guó)版)
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問(wèn)題及優(yōu)化建議7100字(論文)】
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
- 物流無(wú)人機(jī)垂直起降場(chǎng)選址與建設(shè)規(guī)范
- 冷庫(kù)存儲(chǔ)合同協(xié)議書(shū)范本
- AQ/T 4131-2023 煙花爆竹重大危險(xiǎn)源辨識(shí)(正式版)
- 武術(shù)體育運(yùn)動(dòng)文案范文
- 設(shè)計(jì)服務(wù)合同范本百度網(wǎng)盤(pán)
評(píng)論
0/150
提交評(píng)論