4S黑帶培訓(xùn)課程英文版_第1頁(yè)
4S黑帶培訓(xùn)課程英文版_第2頁(yè)
4S黑帶培訓(xùn)課程英文版_第3頁(yè)
4S黑帶培訓(xùn)課程英文版_第4頁(yè)
4S黑帶培訓(xùn)課程英文版_第5頁(yè)
已閱讀5頁(yè),還剩66頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、4S黑帶培訓(xùn)課程英文版 Process Variation Process Capability Specification, Process and Control Limits Process Potential vs Process Performance Short-Term vs Long-Term Process Capability Process Capability for Non-Normal Data Cycle-Time(Exponential Distribution) Reject Rate(Binomial Distribution) Defect Rate(Po

2、isson Distribution)Process Variation is the inevitable differences among individual measurements or units produced by a process.Sources of Variationwithin unit(positional variation)between units(unit-unit variation)between lots(lot-lot variation)between lines(line-line variation)across time(time-tim

3、e variation)measurement error(repeatability & reproducibility)Inherent or Natural VariationDue to the cumulative effect of many small unavoidable causesA process operating with only chance causes of variation present is said to be “in statistical control” Special or Assignable VariationMay be du

4、e to a) improperly adjusted machine b) operator error c) defective raw materialA process operating in the presence of assignable causes of variation is said to be “out-of-control”Process Capability is the inherent reproducibility of a processs output. It measures how well the process is currently be

5、having with respect to the output specifications. It refers to the uniformity of the process.Capability is often thought of in terms of the proportion of output that will be within product specification tolerances. The frequency of defectives produced may be measured ina) percentage (%)b) parts per

6、million (ppm)c) parts per billion (ppb)Process Capability studies can indicate the consistency of the process output indicate the degree to which the output meets specifications be used for comparison with another process or competitora)b)c)a) Process is highly capableb) Process is marginally capabl

7、ec) Process is not capableSpecification Limits (LSL and USL) created by design engineering in response to customer requirements to specify the tolerance for a products characteristicProcess Limits (LPL and UPL)measures the variation of a processthe natural 6 limits of the measured characteristicCont

8、rol Limits (LCL and UCL)measures the variation of a sample statistic (mean, variance, proportion, etc)Distribution of Individual ValuesDistribution of Sample AveragesTwo measures of process capability Process Potential Cp Process Performance Cpu Cpl CpkThe Cp index assesses whether the natural toler

9、ance (6) of a process is within the specification limits.6LSLUSLToleranceNaturalTolerancegEngineerinCpA Cp of 1.0 indicates that a process is judged to be “capable”, i.e. if the process is centered within its engineering tolerance, 0.27% of parts produced will be beyond specification limits. Cp Reje

10、ct Rate1.000.270 %1.330.007 %1.506.8 ppm2.002.0 ppba)b)c)a) Process is highly capable (Cp2)b) Process is capable (Cp=1 to 2)c) Process is not capable (Cp1.5)b) Process is capable (Cpk=1 to 1.5)c) Process is not capable (Cpk1)a)Cp = 2Cpk = 2b)Cp = 2Cpk = 1c)Cp = 2Cpk 1Specification Limits:4 to 16 gMa

11、chineMeanStd Dev(a) 10 4(b) 10 2(c) 7 2(d) 13 1Determine the corresponding Cp and Cpk for each machine. 5 . 0464166LSLUSLCp 5 . 043410;431016Min3LSL;3USLMinCpk 0 . 1264166LSLUSLCp 0 . 123410;231016Min3LSL;3USLMinCpk 0 . 1264166LSLUSLCp 5 . 02347;23716Min3LSL;3USLMinCpk 0 . 2164166LSLUSLCp 0 . 113413

12、;131316Min3LSL;3USLMinCpkFor a normally distributed characteristic, the defective rate F(x) may be estimated via the following:For characteristics with only one specification limit:a) LSL onlyb) USL only USLxPrLSLxPrxFUSL1LSLUSLLSLZ1ZLSLUSL LSLZLSLxPrxF USLZ1USLxPrxFSpecification Limits:4 to 16 gMac

13、hineMeanStd Dev(a) 10 4(b) 10 2(c) 7 2(d) 13 1Determine the defective rate for each machine.Mean Std Dev ZLSL ZUSL F(xUSL) F(x) 10 4 -1.51.5 66,807 66,807133,614 10 2 -3.03.0 1,350 1,350 2,700 7 2 -1.54.5 66,807 3 66,811 13 1 -9.03.0 0 1,350 1,350Lower Spec Limit = 4 gUpper Spec Limit = 16 g(a) Poor

14、 Process Potential(b) Poor Process PerformanceLSLUSLLSLUSLExperimental Design to reduce variationExperimental Design to center mean to reduce variation Process Potential Index (Cp) Cpk 1.0 1.2 1.4 1.6 1.8 2.0 1.02,699.9 1,363.3 1,350.0 1,350.0 1,350.0 1,350.0 1.2 318.3 159.9 159.1 159.1 159.1 1.4 26

15、.7 13.4 13.4 13.4 1.6 1.6 0.8 0.8 1.8 0.1 0.0 2.0 0.0Defective Rate (measured in dppm) is dependent on the actual combination of Cp and Cpk.a)Cp = 2Cpk = 2b)Cp = 2Cpk = 1c)Cp = 2Cpk USLPPM USLPPM USLPPM USLPPM USLPPM LSLPpkPPLPPUPpScaleShapeSample NMeanLSLTargetUSL122970.80122970.80 * 75000.00 75000

16、.00 *0.39 *0.39 *3.341.004003.34 * *7.00Expected LT PerformanceObserved LT PerformanceOverall (LT) CapabilityProcess DataStat Quality Tools Capability Sixpack (Weibull)4003002001000241680Individual and MR ChartObser.Individual ValueMean=3.34UCL=10.46LCL=-3.779241680Mov.RangeR=2.677UCL=8.746LCL=04003

17、90380Last 25 Observations9630Observation NumberValues7Overall (LT)Shape: 1.00Scale: 3.34Pp: *Ppk: 0.39Capability PlotProcess ToleranceSpecificationsIIII10.001.000.100.01Weibull Prob Plot20100Capability HistogramProcess Capability for Complaint ClosureFor a Normal Distribution, the proportion of part

18、s produced beyond a specification limit is )Z(F1USLZPr1USLZPrUSLXPrReject RateThus, for every reject rate there is an accompanying Z-Score, whereRecall thatHence3NSLPpkLimitSpecScoreZ3ScoreZPpkEstimation of Ppk for Reject Rate Determine the long-term reject rate (p) Determine the inverse cumulative

19、probability for p,using Calc Probability Distribution Normal Z-Score is the magnitude of the returned value Ppk is one-third of the Z-ScoreA sales manager plans to assess the process capability of his telephone sales departments handling of incoming calls. The following data was collected over a per

20、iod of 20 days: number of incoming calls per day number of unanswered calls per daysStat Quality Tools Capability Analysis (Binomial)201000.260.250.240.230.220.210.200.19Sample NumberProportionP=0.2264UCL=0.2555LCL=0.1973201023.522.521.5Sample Number%Defective2624222020501950185026252423222120%Defec

21、tiveSample SizeProcess Capability for Telephone SalesSummary StatsCumulative %DefectiveDist of %DefectiveP ChartRate of Defectives(denotes 95% C.I.)Average P:%Defective:Target:PPM Def.:Process Z:0.22642722.64302264270.751(0.2222, 0.2307)(22.22, 23.07)(222241, 230654)(0.737, 0.765)Ppk = 0.25Other app

22、lications, approximating a Poisson Distribution : error rates particle count chemical concentrationEstimation of Ytp for Defect Rate Define size of an inspection unit Determine the long-term defects per unit (DPU)DPU= Total Defects Total Units Determine the throughput yield (Ytp)Ytp= expDPUEstimatio

23、n of Sigma-Capability for Defect Rate Determine the opportunities per unit Determine the long-term defects per opportunity (d)d= defects per unit opportunities per unit Determine the inverse cumulative probability for d,using Calc Probability Distribution Normal Z-Score is the magnitude of the retur

24、ned value Sigma-Capability = Z-Score + 1.5The process manager for a wire manufacturer is concerned about the effectiveness of the wire insulation process. Random lengths of electrical wiring are taken and tested for weak spots in their insulation by means of a test voltage. The number of weak spots

25、and the length of each piece of wire are recorded. Stat Quality Tools Capability Analysis (Poisson)10090807060504030201000.080.070.060.050.040.030.020.010.00Sample NumberSample CountU=0.02652UCL=0.06904LCL=01009080706050403020100.0300.0250.0200.015Sample NumberDPU0.0750.0500.0250.000Target1501401301

26、201101000.080.070.060.050.040.030.020.010.00DPUSample SizeProcess Capability for Wire InsulationSummary StatsCumulative DPUDist of DPUU ChartDefect Rate(denotes 95% C.I.)Mean DPU:Min DPU:Max DPU:Targ DPU:0.026519400.07534250(0.0237309, 0.0295455)Defects per Unit = 0.0265194Throughput Yield = expDPU

27、= exp0.0265194 = 0.9738c.f. First-Time Yield = 2 / 100 = 0.02150140130120110100LengthBoxplot of LengthDefine1 Inspection Unit= 125 unit length of wirei.e.Units= Length 125Stat Quality Tools Capability Analysis (Poisson)10090807060504030201001050Sample NumberSample CountU=3.315UCL=8.630LCL=0100908070

28、6050403020103.53.02.52.0Sample NumberDPU9630Target1.21.11.00.90.8109876543210DPUSample SizeProcess Capability for Wire InsulationSummary StatsCumulative DPUDist of DPUU ChartDefect Rate(denotes 95% C.I.)Mean DPU:Min DPU:Max DPU:Targ DPU:3.3149309.417810(2.96637, 3.69319)Defects per Unit = 3.31493Throughput Yield = expDPU = exp3.31493 = 0.0363c.f. First-Time Yield = 2 / 100 = 0.0210090807060504030201001050Sample NumberSample CountU=3.315UCL=8.630LCL=01009080706050403020103.53.02.52.0Sample NumberDPU9

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論