同濟(jì)高等數(shù)學(xué)公式大全_第1頁
同濟(jì)高等數(shù)學(xué)公式大全_第2頁
同濟(jì)高等數(shù)學(xué)公式大全_第3頁
同濟(jì)高等數(shù)學(xué)公式大全_第4頁
同濟(jì)高等數(shù)學(xué)公式大全_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、同濟(jì)高等數(shù)學(xué)公式大全高等數(shù)學(xué)公式導(dǎo)數(shù)公式:基本積分表:三角函數(shù)的有理式積分:一些初等函數(shù): 兩個重要極限:三角函數(shù)公式:·誘導(dǎo)公式: 函數(shù)角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·

2、和差化積公式:·倍角公式:·半角公式:·正弦定理: ·余弦定理: ·反三角函數(shù)性質(zhì):高階導(dǎo)數(shù)公式萊布尼茲(Leibniz)公式:中值定理與導(dǎo)數(shù)應(yīng)用:曲率:定積分的近似計算:定積分應(yīng)用相關(guān)公式:空間解析幾何和向量代數(shù):多元函數(shù)微分法及應(yīng)用微分法在幾何上的應(yīng)用:方向?qū)?shù)與梯度:多元函數(shù)的極值及其求法:重積分及其應(yīng)用:柱面坐標(biāo)和球面坐標(biāo):曲線積分:曲面積分:高斯公式:斯托克斯公式曲線積分與曲面積分的關(guān)系:常數(shù)項級數(shù):級數(shù)審斂法:絕對收斂與條件收斂:冪級數(shù):函數(shù)展開成冪級數(shù):一些函數(shù)展開成冪級數(shù):歐拉公式:三角級數(shù):傅立葉級數(shù):周期為的周期函數(shù)的傅立葉

3、級數(shù):微分方程的相關(guān)概念:一階線性微分方程:全微分方程:二階微分方程:二階常系數(shù)齊次線性微分方程及其解法:(*)式的通解兩個不相等實根兩個相等實根一對共軛復(fù)根二階常系數(shù)非齊次線性微分方程求極限的各種方法1約去零因子求極限例1:求極限【說明】表明無限接近,但,所以這一零因子可以約去。【解】=42分子分母同除求極限例2:求極限【說明】型且分子分母都以多項式給出的極限,可通過分子分母同除來求?!窘狻俊咀ⅰ?1) 一般分子分母同除的最高次方;(2) 3分子(母)有理化求極限例3:求極限【說明】分子或分母有理化求極限,是通過有理化化去無理式?!窘狻坷?:求極限【解】【注】本題除了使用分子有理化方法外,及

4、時分離極限式中的非零因子是解題的關(guān)鍵4應(yīng)用兩個重要極限求極限兩個重要極限是和,第一個重要極限過于簡單且可通過等價無窮小來實現(xiàn)。主要考第二個重要極限。例5:求極限【說明】第二個重要極限主要搞清楚湊的步驟:先湊出,再湊,最后湊指數(shù)部分?!窘狻坷?:(1);(2)已知,求。5用等價無窮小量代換求極限【說明】(1)常見等價無窮小有:當(dāng) 時,;(2) 等價無窮小量代換,只能代換極限式中的因式;(3)此方法在各種求極限的方法中應(yīng)作為首選。例7:求極限【解】 .例8:求極限【解】6用羅必塔法則求極限例9:求極限【說明】或型的極限,可通過羅必塔法則來求?!窘狻俊咀ⅰ吭S多變動上顯的積分表示的極限,常用羅必塔法則

5、求解例10:設(shè)函數(shù)f(x)連續(xù),且,求極限【解】 由于,于是 =7用對數(shù)恒等式求極限 例11:極限 【解】 =【注】對于型未定式的極限,也可用公式=因為例12:求極限.【解1】 原式 【解2】 原式 8利用Taylor公式求極限 例13 求極限 .【解】 , ; .例14 求極限.【解】 .9數(shù)列極限轉(zhuǎn)化成函數(shù)極限求解例15:極限【說明】這是形式的的數(shù)列極限,由于數(shù)列極限不能使用羅必塔法則,若直接求有一定難度,若轉(zhuǎn)化成函數(shù)極限,可通過7提供的方法結(jié)合羅必塔法則求解。【解】考慮輔助極限所以,10n項和數(shù)列極限問題n項和數(shù)列極限問題極限問題有兩種處理方法(1)用定積分的定義把極限轉(zhuǎn)化為定積分來計算

6、;(2)利用兩邊夾法則求極限.例16:極限【說明】用定積分的定義把極限轉(zhuǎn)化為定積分計算,是把看成0,1定積分。【解】原式例17:極限【說明】(1)該題遇上一題類似,但是不能湊成的形式,因而用兩邊夾法則求解; (2) 兩邊夾法則需要放大不等式,常用的方法是都換成最大的或最小的。【解】因為又所以12單調(diào)有界數(shù)列的極限問題例18:設(shè)數(shù)列滿足()證明存在,并求該極限;()計算. 【分析】 一般利用單調(diào)增加有上界或單調(diào)減少有下界數(shù)列必有極限的準(zhǔn)則來證明數(shù)列極限的存在. 【詳解】 ()因為,則.可推得,則數(shù)列有界.于是,(因當(dāng)), 則有,可見數(shù)列單調(diào)減少,故由單調(diào)減少有下界數(shù)列必有極限知極限存在.設(shè),在兩

7、邊令,得,解得,即.()因,由()知該極限為型, (使用了羅必塔法則)故.求不定積分的方法及技巧小匯總1. 利用基本公式。(這就不多說了)2. 第一類換元法。(湊微分)設(shè)f()具有原函數(shù)F()。則其中可微。用湊微分法求解不定積分時,首先要認(rèn)真觀察被積函數(shù),尋找導(dǎo)數(shù)項內(nèi)容,同時為下一步積分做準(zhǔn)備。當(dāng)實在看不清楚被積函數(shù)特點時,不妨從被積函數(shù)中拿出部分算式求導(dǎo)、嘗試,或許從中可以得到某種啟迪。如例1、例2:例1:【解】例2:【解】3. 第二類換元法:設(shè)是單調(diào)、可導(dǎo)的函數(shù),并且具有原函數(shù),則有換元公式第二類換元法主要是針對多種形式的無理根式。常見的變換形式需要熟記會用。主要有以下幾種:4. 分部積分

8、法.公式:分部積分法采用迂回的技巧,規(guī)避難點,挑容易積分的部分先做,最終完成不定積分。具體選取時,通?;谝韵聝牲c考慮:(1) 降低多項式部分的系數(shù)(2) 簡化被積函數(shù)的類型舉兩個例子吧!例3:【解】觀察被積函數(shù),選取變換,則例4:【解】上面的例3,降低了多項式系數(shù);例4,簡化了被積函數(shù)的類型。有時,分部積分會產(chǎn)生循環(huán),最終也可求得不定積分。在中,的選取有下面簡單的規(guī)律:將以上規(guī)律化成一個圖就是:(axarcsinx)(lnxPm(x)sinx)但是,當(dāng)時,是無法求解的。對于(3)情況,有兩個通用公式:(分部積分法用處多多在本冊雜志的涉及l(fā)nx的不定積分中,常可以看到分部積分)5. 幾種特殊類型函數(shù)的積分。(1) 有理函數(shù)的積分有理函數(shù)先化為多項式和真分式之和,再把分解為若干個部分分式之和。(對各部分分式的處理可能會比較復(fù)雜。出現(xiàn)時,記得用遞推公式:)例5:【解】故不定積分求得。(2)三角函數(shù)有理式的積分萬能公式:的積分,但由于計算較煩,應(yīng)盡量避免。對于只含有tanx(或cotx)的分式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論