下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、【立方計(jì)算公式,不是體積計(jì)算公式】完全立方和公式 (a+b)3 =(a+b)(a+b)(a+b) = (a2+2ab+b2)(a+b)=a3 + 3(a2)b + 3a(b2)+ b3 完全立方差公式 (a-b)3 = (a-b)(a-b)(a-b)= (a2-2ab+b2)(a-b) = a3 - 3(a2)b + 3a(b2)-b3立方和公式:a3+b3 = (a+b) (a2-ab+b2立方差公式:a3-b3=(a-b) (a2+ab+b2)3項(xiàng)立方和公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac)三角函數(shù)公式兩角和公式sin(A+B) = sinA
2、cosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tan(A-B) =cot(A+B) = cot(A-B) =倍角公式tan2A = Sin2A=2SinACosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式s
3、in()= cos()=tan()= cot()= tan()=和差化積 sina+sinb=2sincos sina-sinb=2cossincosa+cosb = 2coscos cosa-cosb = -2sinsintana+tanb=積化和差 sinasinb = -cos(a+b)-cos(a-b) cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b) cosasinb = sin(a+b)-sin(a-b)誘導(dǎo)公式 sin(-a) = -sina cos(-a) = cosa sin(-a) = cosacos(-a)
4、= sina sin(+a) = cosa cos(+a) = -sinasin(-a) = sina cos(-a) = -cosa sin(+a) = -sinacos(+a) = -cosa tgA=tanA =萬能公式sina= cosa= tana=其它公式asina+bcosa=×sin(a+c) 其中tanc=asin(a)-bcos(a) = ×cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)2 1-sin(a) = (sin-cos)2其他非重點(diǎn)三角函數(shù)csc(a) = sec(a) =雙曲函數(shù)sinh(a)= cosh(a)=
5、tg h(a)=公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin2k= sin cos2k= cos tan2k= tan cot2k= cot 公式二: 設(shè)為任意角,+的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系: sin= -sin cos= -cos tan= tan cot= cot 公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系: sin-= -sin cos-= cos tan-= -tan cot-= -cot 公式四: 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sin-= sin cos-= -cos tan-= -tan cot-= -cot 公式五:
6、利用公式-和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin2-= -sin cos2-= cos tan2-= -tan cot2-= -cot 公式六: ±及±與的三角函數(shù)值之間的關(guān)系: sin+= cos cos+= -sin tan+= -cot cot+= -tan sin-= cos cos-= sin tan-= cot cot-= tan sin+= -cos cos+= sin tan+= -cot cot+= -tan sin-= -cos cos-= -sin tan-= cot cot-= tan (以上kZ) 這個物理常用公式我費(fèi)了半天的勁才輸
7、進(jìn)來,希望對大家有用 Asin(t+)+ Bsin(t+) =×sin三角函數(shù)公式證明全部2009-07-08 16:13公式表達(dá)式 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-b+(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4a=0 注
8、:方程有相等的兩實(shí)根 b2-4ac>0 注:方程有一個實(shí)根 b2-4ac<0 注:方程有共軛復(fù)數(shù)根 三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)
9、/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和
10、差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些數(shù)列前
11、n項(xiàng)和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑 余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角 正切定理:
12、(a+b)/(a-b)=Tan(a+b)/2/Tan(a-b)/2圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:a,b是圓心坐標(biāo) 圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h 正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h' 圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的外表積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1
13、/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h-三角函數(shù) 積化和差 和差化積公式記不住就自己推,用兩角和差的正余弦: cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB 這兩式相加
14、或相減,可以得到2組積化和差: 相加:cosAcosB=cos(A+B)+cos(A-B)/2 相減:sinAsinB=-cos(A+B)-cos(A-B)/2 sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB-sinBcosA 這兩式相加或相減,可以得到2組積化和差: 相加:sinAcosB=sin(A+B)+sin(A-B)/2 相減:sinBcosA=sin(A+B)-sin(A-B)/2 這樣一共4組積化和差,然后倒過來就是和差化積了 不知道這樣你可以記住伐,實(shí)在記不住考試的時候也可以臨時推導(dǎo)一下正加正 正在前 正減正 余在前 余加余 都是余 余
15、減余 沒有余還負(fù) 正余正加 余正正減 余余余加 正正余減還負(fù).3.三角形中的一些結(jié)論:(不要求記憶) (1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA·sinB·sinC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版宿舍樓智能監(jiān)控設(shè)施承包合同3篇
- 2025年度木材貿(mào)易與木工加工合作合同4篇
- 夏令營2025非傳統(tǒng)教育項(xiàng)目合作合同3篇
- 2025年度木材加工廠設(shè)備租賃合同范本7篇
- 《漢服唯美古詩句》課件
- 2025版實(shí)習(xí)員工實(shí)習(xí)期間住宿安排合同3篇
- 養(yǎng)生保健與中醫(yī)養(yǎng)生藥物考核試卷
- 合成革表面處理與涂飾技術(shù)考核試卷
- 2025版智能電網(wǎng)信息安全防護(hù)合同4篇
- 創(chuàng)業(yè)空間科技創(chuàng)新平臺考核試卷
- 《天潤乳業(yè)營運(yùn)能力及風(fēng)險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 農(nóng)民專業(yè)合作社財(cái)務(wù)報(bào)表(三張報(bào)表)
- 動土作業(yè)專項(xiàng)安全培訓(xùn)考試試題(帶答案)
- 大學(xué)生就業(yè)指導(dǎo)(高職就業(yè)指導(dǎo)課程 )全套教學(xué)課件
- 死亡病例討論總結(jié)分析
- 第二章 會展的產(chǎn)生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- 商戶用電申請表
評論
0/150
提交評論