




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優(yōu)質文檔-傾情為你奉上二次函數知識點(第一講)一、二次函數概念:1二次函數的概念:一般地,形如(是常數,)的函數,叫做二次函數。 這里需要強調:和一元二次方程類似,二次項系數,而可以為零二次函數的定義域是全體實數2. 二次函數的結構特征: 等號左邊是函數,右邊是關于自變量的二次式,的最高次數是2 是常數,是二次項系數,是一次項系數,是常數項二、二次函數的基本形式1. 二次函數基本形式:的性質:a 的絕對值越大,拋物線的開口越小。的符號開口方向頂點坐標對稱軸性質向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下軸時,隨的增大而減??;時,隨的增大而增大;時,有最大值2. 的性質:(
2、上加下減)的符號開口方向頂點坐標對稱軸性質向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值3. 的性質:(左加右減)的符號開口方向頂點坐標對稱軸性質向上X=h時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值4. 的性質:的符號開口方向頂點坐標對稱軸性質向上X=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下X=h時,隨的增大而減小;時,隨的增大而增大;時,有最大值三、二次函數圖象的平移 1. 平移步驟:方法一: 將拋物線解析式轉化成頂點式,確定其頂點坐
3、標; 保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數的基礎上“值正右移,負左移;值正上移,負下移”概括成八個字“左加右減,上加下減” 方法二:沿軸平移:向上(下)平移個單位,變成(或)沿軸平移:向左(右)平移個單位,變成(或) 四、二次函數與的比較從解析式上看,與是兩種不同的表達形式,后者通過配方可以得到前者,即,其中五、二次函數圖象的畫法五點繪圖法:利用配方法將二次函數化為頂點式,確定其開口方向、對稱軸及頂點坐標,然后在對稱軸兩側,左右對稱地描點畫圖.一般我們選取的五點為:頂點、與軸的交點、以及關于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組
4、關于對稱軸對稱的點).畫草圖時應抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.六、二次函數的性質 1. 當時,拋物線開口向上,對稱軸為,頂點坐標為當時,隨的增大而減??;當時,隨的增大而增大;當時,有最小值 2. 當時,拋物線開口向下,對稱軸為,頂點坐標為當時,隨的增大而增大;當時,隨的增大而減??;當時,有最大值七、二次函數解析式的表示方法1. 一般式:(,為常數,);2. 頂點式:(,為常數,);3. 兩根式:(,是拋物線與軸兩交點的橫坐標).注意:任何二次函數的解析式都可以化成一般式或頂點式,但并非所有的二次函數都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可
5、以用交點式表示二次函數解析式的這三種形式可以互化.八、二次函數的圖象與各項系數之間的關系 1. 二次項系數二次函數中,作為二次項系數,顯然 當時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; 當時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大總結起來,決定了拋物線開口的大小和方向,的正負決定開口方向,的大小決定開口的大小2. 一次項系數 在二次項系數確定的前提下,決定了拋物線的對稱軸 在的前提下,當時,即拋物線的對稱軸在軸左側;當時,即拋物線的對稱軸就是軸;當時,即拋物線對稱軸在軸的右側 在的前提下,結論剛好與上述相反,即當時,即拋物線的對稱軸在軸右側;當時,即拋
6、物線的對稱軸就是軸;當時,即拋物線對稱軸在軸的左側總結起來,在確定的前提下,決定了拋物線對稱軸的位置的符號的判定:對稱軸在軸左邊則,在軸的右側則,概括的說就是“左同右異”總結: 3. 常數項 當時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標為正; 當時,拋物線與軸的交點為坐標原點,即拋物線與軸交點的縱坐標為; 當時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標為負 總結起來,決定了拋物線與軸交點的位置 總之,只要都確定,那么這條拋物線就是唯一確定的二次函數解析式的確定:根據已知條件確定二次函數解析式,通常利用待定系數法用待定系數法求二次函數的解析式必須根據題目的特點,選擇適當的形
7、式,才能使解題簡便一般來說,有如下幾種情況:1. 已知拋物線上三點的坐標,一般選用一般式;2. 已知拋物線頂點或對稱軸或最大(小)值,一般選用頂點式;3. 已知拋物線與軸的兩個交點的橫坐標,一般選用兩根式;4. 已知拋物線上縱坐標相同的兩點,常選用頂點式九、二次函數圖象的對稱 二次函數圖象的對稱一般有五種情況,可以用一般式或頂點式表達 1. 關于軸對稱 關于軸對稱后,得到的解析式是; 關于軸對稱后,得到的解析式是; 2. 關于軸對稱 關于軸對稱后,得到的解析式是; 關于軸對稱后,得到的解析式是; 3. 關于原點對稱 關于原點對稱后,得到的解析式是; 關于原點對稱后,得到的解析式是; 4. 關于
8、頂點對稱(即:拋物線繞頂點旋轉180) 關于頂點對稱后,得到的解析式是;關于頂點對稱后,得到的解析式是 5. 關于點對稱 關于點對稱后,得到的解析式是 根據對稱的性質,顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠不變求拋物線的對稱拋物線的表達式時,可以依據題意或方便運算的原則,選擇合適的形式,習慣上是先確定原拋物線(或表達式已知的拋物線)的頂點坐標及開口方向,再確定其對稱拋物線的頂點坐標及開口方向,然后再寫出其對稱拋物線的表達式十、二次函數與一元二次方程:1. 二次函數與一元二次方程的關系(二次函數與軸交點情況):一元二次方程是二次函數當函數值時的特殊情況.圖象與軸的交點個數
9、: 當時,圖象與軸交于兩點,其中的是一元二次方程的兩根這兩點間的距離. 當時,圖象與軸只有一個交點; 當時,圖象與軸沒有交點. 當時,圖象落在軸的上方,無論為任何實數,都有; 當時,圖象落在軸的下方,無論為任何實數,都有 2. 拋物線的圖象與軸一定相交,交點坐標為,; 3. 二次函數常用解題方法總結: 求二次函數的圖象與軸的交點坐標,需轉化為一元二次方程; 求二次函數的最大(?。┲敌枰门浞椒▽⒍魏瘮涤梢话闶睫D化為頂點式; 根據圖象的位置判斷二次函數中,的符號,或由二次函數中,的符號判斷圖象的位置,要數形結合; 二次函數的圖象關于對稱軸對稱,可利用這一性質,求和已知一點對稱的點坐標,或已知
10、與軸的一個交點坐標,可由對稱性求出另一個交點坐標.拋物線與軸有兩個交點二次三項式的值可正、可零、可負一元二次方程有兩個不相等實根拋物線與軸只有一個交點二次三項式的值為非負一元二次方程有兩個相等的實數根拋物線與軸無交點二次三項式的值恒為正一元二次方程無實數根. 與二次函數有關的還有二次三項式,二次三項式本身就是所含字母的二次函數;下面以時為例,揭示二次函數、二次三項式和一元二次方程之間的內在聯(lián)系:二次函數考查重點與常見題型1 考查二次函數的定義、性質,有關試題常出現(xiàn)在選擇題中,如:已知以為自變量的二次函數的圖像經過原點, 則的值是 2 綜合考查正比例、反比例、一次函數、二次函數的圖像,習題的特點
11、是在同一直角坐標系內考查兩個函數的圖像,試題類型為選擇題,如:如圖,如果函數的圖像在第一、二、三象限內,那么函數的圖像大致是( ) y y y y 1 1 0 x o-1 x 0 x 0 -1 x A B C D3 考查用待定系數法求二次函數的解析式,有關習題出現(xiàn)的頻率很高,習題類型有中檔解答題和選拔性的綜合題,如:已知一條拋物線經過(0,3),(4,6)兩點,對稱軸為,求這條拋物線的解析式。4 考查用配方法求拋物線的頂點坐標、對稱軸、二次函數的極值,有關試題為解答題,如:已知拋物線(a0)與x軸的兩個交點的橫坐標是1、3,與y軸交點的縱坐標是(1)確定拋物線的解析式;(2)用配方法確定拋物線
12、的開口方向、對稱軸和頂點坐標. 5考查代數與幾何的綜合能力,常見的作為專項壓軸題。【例題經典】由拋物線的位置確定系數的符號例1 (1)二次函數的圖像如圖1,則點在( ) A第一象限 B第二象限 C第三象限 D第四象限 (2)已知二次函數y=ax2+bx+c(a0)的圖象如圖2所示,則下列結論:a、b同號;當x=1和x=3時,函數值相等;4a+b=0;當y=-2時,x的值只能取0.其中正確的個數是( )A1個 B2個 C3個 D4個 (1) (2)【點評】弄清拋物線的位置與系數a,b,c之間的關系,是解決問題的關鍵例2.已知二次函數y=ax2+bx+c的圖象與x軸交于點(-2,O)、(x1,0)
13、,且1x12,與y軸的正半軸的交點在點(O,2)的下方下列結論:abO;4a+cO,其中正確結論的個數為( ) A 1個 B. 2個 C. 3個 D4個答案:D會用待定系數法求二次函數解析式例3.已知:關于x的一元二次方程ax2+bx+c=3的一個根為x=-2,且二次函數y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為( ) A(2,-3) B.(2,1) C(2,3) D(3,2)答案:C例4、(2006年煙臺市)如圖(單位:m),等腰三角形ABC以2米/秒的速度沿直線L向正方形移動,直到AB與CD重合設x秒時,三角形與正方形重疊部分的面積為ym2(1)寫出y與x的關系式;(2
14、)當x=2,3.5時,y分別是多少?(3)當重疊部分的面積是正方形面積的一半時,三角形移動了多長時間?求拋物線頂點坐標、對稱軸.例5、已知拋物線y=x2+x-(1)用配方法求它的頂點坐標和對稱軸(2)若該拋物線與x軸的兩個交點為A、B,求線段AB的長【點評】本題(1)是對二次函數的“基本方法”的考查,第(2)問主要考查二次函數與一元二次方程的關系例6.已知:二次函數y=ax2-(b+1)x-3a的圖象經過點P(4,10),交x軸于,兩點,交y軸負半軸于C點,且滿足3AO=OB(1)求二次函數的解析式;(2)在二次函數的圖象上是否存在點M,使銳角MCOACO?若存在,請你求出M點的橫坐標的取值范
15、圍;若不存在,請你說明理由(1)解:如圖拋物線交x軸于點A(x1,0),B(x2,O),則x1x2=30,又x1O,x1O,30A=OB,x2=-3x1 x1x2=-3x12=-3x12=1. x10,x1=-1x2=3 點A(-1,O),P(4,10)代入解析式得解得a=2 b=3 二次函數的解析式為y-2x2-4x-6(2)存在點M使MC0ACO(2)解:點A關于y軸的對稱點A(1,O),直線A,C解析式為y=6x-6直線AC與拋物線交點為(0,-6),(5,24)符合題意的x的范圍為-1x0或Ox5當點M的橫坐標滿足-1xO或OxACO例7、 “已知函數的圖象經過點A(c,2), 求證:
16、這個二次函數圖象的對稱軸是x=3?!鳖}目中的矩形框部分是一段被墨水污染了無法辨認的文字。(1)根據已知和結論中現(xiàn)有的信息,你能否求出題中的二次函數解析式?若能,請寫出求解過程,并畫出二次函數圖象;若不能,請說明理由。(2)請你根據已有的信息,在原題中的矩形框中,填加一個適當的條件,把原題補充完整。點評: 對于第(1)小題,要根據已知和結論中現(xiàn)有信息求出題中的二次函數解析式,就要把原來的結論“函數圖象的對稱軸是x=3”當作已知來用,再結合條件“圖象經過點A(c,2)”,就可以列出兩個方程了,而解析式中只有兩個未知數,所以能夠求出題中的二次函數解析式。對于第(2)小題,只要給出的條件能夠使求出的二
17、次函數解析式是第(1)小題中的解析式就可以了。而從不同的角度考慮可以添加出不同的條件,可以考慮再給圖象上的一個任意點的坐標,可以給出頂點的坐標或與坐標軸的一個交點的坐標等。解答 (1)根據的圖象經過點A(c,2),圖象的對稱軸是x=3,得解得所以所求二次函數解析式為圖象如圖所示。(2)在解析式中令y=0,得,解得所以可以填“拋物線與x軸的一個交點的坐標是(3+”或“拋物線與x軸的一個交點的坐標是令x=3代入解析式,得所以拋物線的頂點坐標為所以也可以填拋物線的頂點坐標為等等。函數主要關注:通過不同的途徑(圖象、解析式等)了解函數的具體特征;借助多種現(xiàn)實背景理解函數;將函數視為“變化過程中變量之間
18、關系”的數學模型;滲透函數的思想;關注函數與相關知識的聯(lián)系。用二次函數解決最值問題例1已知邊長為4的正方形截去一個角后成為五邊形ABCDE(如圖),其中AF=2,BF=1試在AB上求一點P,使矩形PNDM有最大面積【評析】本題是一道代數幾何綜合題,把相似三角形與二次函數的知識有機的結合在一起,能很好考查學生的綜合應用能力同時,也給學生探索解題思路留下了思維空間例2 某產品每件成本10元,試銷階段每件產品的銷售價x(元)與產品的日銷售量y(件)之間的關系如下表:x(元)152030y(件)252010 若日銷售量y是銷售價x的一次函數 (1)求出日銷售量y(件)與銷售價x(元)的函數關系式; (
19、2)要使每日的銷售利潤最大,每件產品的銷售價應定為多少元?此時每日銷售利潤是多少元? 【解析】(1)設此一次函數表達式為y=kx+b則 解得k=-1,b=40,即一次函數表達式為y=-x+40 (2)設每件產品的銷售價應定為x元,所獲銷售利潤為w元 w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225 產品的銷售價應定為25元,此時每日獲得最大銷售利潤為225元 【點評】解決最值問題應用題的思路與一般應用題類似,也有區(qū)別,主要有兩點:(1)設未知數在“當某某為何值時,什么最大(或最小、最?。钡脑O問中,“某某”要設為自變量,“什么”要設為函數;(2)問的求解依靠配方法
20、或最值公式,而不是解方程例3.你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線如圖所示,正在甩繩的甲、乙兩名學生拿繩的手間距為4 m,距地面均為1m,學生丙、丁分別站在距甲拿繩的手水平距離1m、25 m處繩子在甩到最高處時剛好通過他們的頭頂已知學生丙的身高是15 m,則學生丁的身高為(建立的平面直角坐標系如右圖所示)( )A15 m B1625 mC166 m D167 m分析:本題考查二次函數的應用答案:B知識點一、平面直角坐標系1,平面直角坐標系在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做
21、y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點,不屬于任何象限。2、點的坐標的概念點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。知識點二、不同位置的點的坐標的特征 1、各象限內點的坐標的特征 點P(x,y)在第一象限點P(x,y)在第二象限點P(x,y)
22、在第三象限點P(x,y)在第四象限2、坐標軸上的點的特征點P(x,y)在x軸上,x為任意實數點P(x,y)在y軸上,y為任意實數點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)3、兩條坐標軸夾角平分線上點的坐標的特征點P(x,y)在第一、三象限夾角平分線上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數4、和坐標軸平行的直線上點的坐標的特征位于平行于x軸的直線上的各點的縱坐標相同。位于平行于y軸的直線上的各點的橫坐標相同。5、關于x軸、y軸或遠點對稱的點的坐標的特征點P與點p關于x軸對稱橫坐標相等,縱坐標互為相反數點P與點p關于y軸對稱縱坐標相等,橫
23、坐標互為相反數點P與點p關于原點對稱橫、縱坐標均互為相反數6、點到坐標軸及原點的距離點P(x,y)到坐標軸及原點的距離:(1)點P(x,y)到x軸的距離等于(2)點P(x,y)到y(tǒng)軸的距離等于(3)點P(x,y)到原點的距離等于知識點三、函數及其相關概念 1、變量與常量在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。2、函數解析式用來表示函數關系的數學式子叫做函數解析式或函數關系式。使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。3、函數
24、的三種表示法及其優(yōu)缺點(1)解析法兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。(2)列表法把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。(3)圖像法用圖像表示函數關系的方法叫做圖像法。4、由函數解析式畫其圖像的一般步驟(1)列表:列表給出自變量與函數的一些對應值(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。知識點四,正比例函數和一次函數 1、正比例函數和一次函數的概念一般地,如果(k,b是常數,k0),那么y叫做x的一次
25、函數。特別地,當一次函數中的b為0時,(k為常數,k0)。這時,y叫做x的正比例函數。2、一次函數的圖像所有一次函數的圖像都是一條直線3、一次函數、正比例函數圖像的主要特征:一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。k的符號b的符號函數圖像圖像特征k0b0 y 0 x圖像經過一、二、三象限,y隨x的增大而增大。b0 y 0 x圖像經過一、三、四象限,y隨x的增大而增大。K0 y 0 x 圖像經過一、二、四象限,y隨x的增大而減小b0時,圖像經過第一、三象限,y隨x的增大而增大;(2)當k0時,y隨x的增大而增大(2)當k0k0時,函數圖像的兩個分支分別
26、在第一、三象限。在每個象限內,y隨x 的增大而減小。x的取值范圍是x0, y的取值范圍是y0;當k0a0 y 0 x y 0 x 性質(1)拋物線開口向上,并向上無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側,即當x時,y隨x的增大而增大,簡記左減右增;(4)拋物線有最低點,當x=時,y有最小值,(1)拋物線開口向下,并向下無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側,即當x時,y隨x的增大而減小,簡記左增右減;(4)拋物線有最高點,當x=時,y有最大值,2、二次函數中,的含義:表示開口方向:0時,拋物線開口向上 0時,圖像與x軸有兩個交點;當=0
27、時,圖像與x軸有一個交點;當0時,圖像與x軸沒有交點。知識點十 中考二次函數壓軸題??脊剑ū赜洷貢?,理解記憶)1、兩點間距離公式(當遇到沒有思路的題時,可用此方法拓展思路,以尋求解題方法) y如圖:點A坐標為(x1,y1)點B坐標為(x2,y2)則AB間的距離,即線段AB的長度為 A 0 x B2,二次函數圖象的平移 將拋物線解析式轉化成頂點式,確定其頂點坐標; 保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下: 平移規(guī)律 在原有函數的基礎上“值正右移,負左移;值正上移,負下移”函數平移圖像大致位置規(guī)律(中考試題中,只占3分,但掌握這個知識點,對提高答題速度有很大幫助,可以大大節(jié)省做
28、題的時間)特別記憶-同左上加 異右下減 (必須理解記憶)說明 函數中ab值同號,圖像頂點在y軸左側同左,a b值異號,圖像頂點必在Y軸右側異右向左向上移動為加左上加,向右向下移動為減右下減3、 直線斜率: b為直線在y軸上的截距4、直線方程:4、 兩點 由直線上兩點確定的直線的兩點式方程,簡稱兩式: 此公式有多種變形 牢記 點斜 斜截 直線的斜截式方程,簡稱斜截式: ykxb(k0)截距 由直線在軸和軸上的截距確定的直線的截距式方程,簡稱截距式:牢記 口訣 -兩點斜截距-兩點 點斜 斜截 截距5、設兩條直線分別為,: : 若,則有且。 若6、 點P(x0,y0)到直線y=kx+b(即:kx-y
29、+b=0) 的距離: 7、 拋物線中, a b c,的作用 (1)決定開口方向及開口大小,這與中的完全一樣. (2)和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線,故:時,對稱軸為軸;(即、同號)時,對稱軸在軸左側;(即、異號)時,對稱軸在軸右側. 口訣 - 同左 異右 (3)的大小決定拋物線與軸交點的位置. 當時,拋物線與軸有且只有一個交點(0,): ,拋物線經過原點; ,與軸交于正半軸; ,與軸交于負半軸. 以上三點中,當結論和條件互換時,仍成立.如拋物線的對稱軸在軸右側,則 .十一,中考點擊 考點分析:內容要求1、函數的概念和平面直角坐標系中某些點的坐標特點2、自變量與函數之間的
30、變化關系及圖像的識別,理解圖像與變量的關系3、一次函數的概念和圖像4、一次函數的增減性、象限分布情況,會作圖5、反比例函數的概念、圖像特征,以及在實際生活中的應用6、二次函數的概念和性質,在實際情景中理解二次函數的意義,會利用二次函數刻畫實際問題中變量之間的關系并能解決實際生活問題命題預測:函數是數形結合的重要體現(xiàn),是每年中考的必考內容,函數的概念主要用選擇、填空的形式考查自變量的取值范圍,及自變量與因變量的變化圖像、平面直角坐標系等,一般占2%左右一次函數與一次方程有緊密地聯(lián)系,是中考必考內容,一般以填空、選擇、解答題及綜合題的形式考查,占5%左右反比例函數的圖像和性質的考查常以客觀題形式出
31、現(xiàn),要關注反比例函數與實際問題的聯(lián)系,突出應用價值,36分;二次函數是初中數學的一個十分重要的內容,是中考的熱點,多以壓軸題出現(xiàn)在試卷中要求:能通過對實際問題情景分析確定二次函數的表達式,并體會二次函數的意義;會用描點法畫二次函數圖像,能叢圖像上分析二次函數的性質;會根據公式確定圖像的頂點、開口方向和對稱軸,并能解決實際問題會求一元二次方程的近似值分析近年中考,尤其是課改實驗區(qū)的試題,預計2009年除了繼續(xù)考查自變量的取值范圍及自變量與因變量之間的變化圖像,一次函數的圖像和性質,在實際問題中考查對反比例函數的概念及性質的理解同時將注重考查二次函數,特別是二次函數的在實際生活中應用十二,初中數學
32、助記口訣(函數部分)特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。函數圖像的移動規(guī)律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍, 同左上加 異右下減一次函數圖像與性質口訣:一次函數是直線,圖
33、像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。反比例函數圖像與性質口訣:反比例函數有特點,雙曲
34、線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。正比例函數是直線,圖象一定過圓點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,的符號最簡便,x軸上數交點,a、b同號軸左邊拋
35、物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。1 對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反, Y軸對稱,x前面添負號; 原點對稱最好記,橫縱坐標變符號。關于軸對稱 關于軸對稱后,得到的解析式是; 關于軸對稱后,得到的解析式是;關于軸對稱 關于軸對稱后,得到的解析式是; 關于軸對稱后,得到的解析式是;關于原點對稱 關于原點對稱后,得到的解析式是; 關于原點對稱后,得到的解析式是關于頂點對稱 關于頂點對稱后,得到的解析式是;關于頂點對稱后,得到的解析式是關于點對稱 關于點對稱后,得到的解析式是根據對稱的性質,顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生
36、變化,因此永遠不變求拋物線的對稱拋物線的表達式時,可以依據題意或方便運算的原則,選擇合適的形式,習慣上是先確定原拋物線(或表達式已知的拋物線)的頂點坐標及開口方向,再確定其對稱拋物線的頂點坐標及開口方向,然后再寫出其對稱拋物線的表達式口訣- - Y反對X,X反對Y,都反對原點2 自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,函數圖像的移動規(guī)律: 若把一次函數解析式寫成y=k(x+0)+b,二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣:“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。一次函數圖像與性質口訣:一次函數是直線,圖像經過仨
37、象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。 二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象限;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數最值見。若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達能互換。反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相
38、背離的遠;k為正,圖在一、三(象)限;k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減;圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。函數學習口決:正比例函數是直線,圖象一定過原點,k的正負是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵;反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換;二次函數拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。求定義域: 求定義域有講究,四項原則須留意。 負數不能開平方,分母為零無意義。 指是分數底正數,數零沒有零次冪。 限制條件不唯一,滿足多個不等式。 求定義域要過關,四項原則須注意。 負數不能開平方,分母為零無意義。 分數指數底正數,數零沒有零次冪。 限制條件不唯一,不等式組求解集。解一元一次不等式: 先去分母再括號,移項合并同類項。 系數化“1”有講究,同乘除負要變向。 先去分母再括號,移項別忘要變號。 同類各項去合并,系數化“1”注意了。 同乘除正無防礙,同乘除負也變號。 解一元二次不等式:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產三卡是指
- 生產安全事故調查處理報告
- 綠色金融估值體系-洞察及研究
- 第二十個全國安全生產月
- 基礎樁植樁法試樁施工技術方案探討
- 建筑類安全生產許可證延期
- 2025企業(yè)安全生產檔案
- 安全生產事故隱患是指
- 消防安全制度一
- 非煤礦山安全生產月活動工作總結
- 2025至2030中國燕窩行業(yè)市場運行分析及競爭格局與投資方向報告
- 2025年河北省中考語文試卷真題及答案詳解(精校打印版)
- 口服靶向藥講課件
- 12024-2025學年暑假安全教育主題班會課件
- 肝膽外科醫(yī)學科普
- 能源轉型與碳市場機制協(xié)同的路徑優(yōu)化研究
- 包席合同協(xié)議
- 中醫(yī)醫(yī)療技術手冊2013普及版
- 幼師應聘個人簡歷表格
- 海運出口培訓課程教學課件
- 2023年副主任醫(yī)師(副高)-內科學(副高)考試歷年高頻考點參考題庫附帶專家答案
評論
0/150
提交評論