橢圓、雙曲線、拋物線練習(xí)題_第1頁(yè)
橢圓、雙曲線、拋物線練習(xí)題_第2頁(yè)
橢圓、雙曲線、拋物線練習(xí)題_第3頁(yè)
橢圓、雙曲線、拋物線練習(xí)題_第4頁(yè)
橢圓、雙曲線、拋物線練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上精講精練【例】以拋物線的焦點(diǎn)為右焦點(diǎn),且兩條漸近線是的雙曲線方程為_(kāi).解: 拋物線的焦點(diǎn)為,設(shè)雙曲線方程為,雙曲線方程為【例】雙曲線=1(bN)的兩個(gè)焦點(diǎn)F1、F2,P為雙曲線上一點(diǎn),|OP|5,|PF1|,|F1F2|,|PF2|成等比數(shù)列,則b2=_。解:設(shè)F1(c,0)、F2(c,0)、P(x,y),則|PF1|2+|PF2|2=2(|PO|2+|F1O|2)2(52+c2),即|PF1|2+|PF2|250+2c2,又|PF1|2+|PF2|2=(|PF1|PF2|)2+2|PF1|·|PF2|,依雙曲線定義,有|PF1|PF2|=4,依已知條件有|

2、PF1|·|PF2|=|F1F2|2=4c2 16+8c250+2c2,c2,又c2=4+b2,b2,b2=1。【例】當(dāng)取何值時(shí),直線:與橢圓相切,相交,相離?解: 代入得化簡(jiǎn)得當(dāng)即時(shí),直線與橢圓相切;當(dāng),即時(shí),直線與橢圓相交;當(dāng),即或時(shí),直線與橢圓相離?!纠恳阎獧E圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)焦點(diǎn)為F,M是橢圓上的任意點(diǎn),|MF|的最大值和最小值的幾何平均數(shù)為2,橢圓上存在著以y=x為軸的對(duì)稱點(diǎn)M1和M2,且|M1M2|=,試求橢圓的方程。解:|MF|max=a+c,|MF|min=ac,則(a+c)(ac)=a2c2=b2,b2=4,設(shè)橢圓方程為設(shè)過(guò)M1和M2的直線

3、方程為y=x+m將代入得:(4+a2)x22a2mx+a2m24a2=0設(shè)M1(x1,y1)、M2(x2,y2),M1M2的中點(diǎn)為(x0,y0),則x0= (x1+x2)=,y0=x0+m=。代入y=x,得,由于a24,m=0,由知x1+x2=0,x1x2=,又|M1M2|=,代入x1+x2,x1x2可解a2=5,故所求橢圓方程為: =1?!纠恳阎獧E圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=x+1與橢圓交于P和Q,且OPOQ,|PQ|=,求橢圓方程。解:設(shè)橢圓方程為mx2+ny2=1(m0,n0),P(x1,y1),Q(x2,y2)由 得(m+n)x2+2nx+n1=0,=4n24(m+

4、n)(n1)0,即m+nmn0,由OPOQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,+1=0,m+n=2又22,將m+n=2,代入得m·n=由、式得m=,n=或m=,n=故橢圓方程為+y2=1或x2+y2=1?!纠恳阎獔AC1的方程為,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程。解:由設(shè)橢圓方程為設(shè) 又 兩式相減,得 又即將由得解得 故所有橢圓方程【例】過(guò)點(diǎn)(1,0)的直線l與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過(guò)線段AB的中點(diǎn),同時(shí)橢圓C上

5、存在一點(diǎn)與右焦點(diǎn)關(guān)于直線l對(duì)稱,試求直線l與橢圓C的方程。解法一:由e=,得,從而a2=2b2,c=b。設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上。則x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12x22)+2(y12y22)=0,設(shè)AB中點(diǎn)為(x0,y0),則kAB=,又(x0,y0)在直線y=x上,y0=x0,于是=1,kAB=1,設(shè)l的方程為y=x+1。右焦點(diǎn)(b,0)關(guān)于l的對(duì)稱點(diǎn)設(shè)為(x,y),由點(diǎn)(1,1b)在橢圓上,得1+2(1b)2=2b2,b2=。所求橢圓C的方程為 =1,l的方程為y=x+1。解法二:由e=,從而a2

6、=2b2,c=b。設(shè)橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x1),將l的方程代入C的方程,得(1+2k2)x24k2x+2k22b2=0,則x1+x2=,y1+y2=k(x11)+k(x21)=k(x1+x2)2k=。直線l:y=x過(guò)AB的中點(diǎn)(),則,解得k=0,或k=1。若k=0,則l的方程為y=0,焦點(diǎn)F(c,0)關(guān)于直線l的對(duì)稱點(diǎn)就是F點(diǎn)本身,不能在橢圓C上,所以k=0舍去,從而k=1,直線l的方程為y=(x1),即y=x+1,以下同解法一。解法三:設(shè)橢圓方程為直線不平行于y軸,否則AB中點(diǎn)在x軸上與直線中點(diǎn)矛盾。故可設(shè)直線, ,則, 所以所求的橢圓方程為:【例】如圖,

7、已知P1OP2的面積為,P為線段P1P2的一個(gè)三等分點(diǎn),求以直線OP1、OP2為漸近線且過(guò)點(diǎn)P的離心率為的雙曲線方程。解:以O(shè)為原點(diǎn),P1OP2的角平分線為x軸建立如圖所示的直角坐標(biāo)系。設(shè)雙曲線方程為=1(a0,b0),由e2=,得。兩漸近線OP1、OP2方程分別為y=x和y=x設(shè)點(diǎn)P1(x1, x1),P2(x2,x2)(x10,x20),則由點(diǎn)P分所成的比=2,得P點(diǎn)坐標(biāo)為(),又點(diǎn)P在雙曲線=1上,所以=1,即(x1+2x2)2(x12x2)2=9a2,整理得8x1x2=9a2 即x1x2= 由、得a2=4,b2=9。 故雙曲線方程為=1?!纠窟^(guò)橢圓C:上一動(dòng)點(diǎn)P引圓O:x2 +y2

8、=b2的兩條切線PA、PB,A、B為切點(diǎn),直線AB與x軸,y軸分別交于M、N兩點(diǎn)。(1) 已知P點(diǎn)坐標(biāo)為(x0,y0 )并且x0y00,試求直線AB方程;(2) 若橢圓的短軸長(zhǎng)為8,并且,求橢圓C的方程;(3) 橢圓C上是否存在點(diǎn)P,由P向圓O所引兩條切線互相垂直?若存在,請(qǐng)求出存在的條件;若不存在,請(qǐng)說(shuō)明理由。解:(1)設(shè)A(x1,y1),B(x2, y2) 切線PA:,PB:P點(diǎn)在切線PA、PB上,直線AB的方程為(2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,) 2b=8 b=4 代入得a2 =25, b2 =16橢圓C方程: (3) 假設(shè)存在點(diǎn)P(x0,y0)滿足P

9、APB,連接OA、OB由|PA|=|PB|知,四邊形PAOB為正方形,|OP|=|OA| 又P點(diǎn)在橢圓C上 由知x a>b>0 a2 b2>0(1)當(dāng)a22b2>0,即a>b時(shí),橢圓C上存在點(diǎn),由P點(diǎn)向圓所引兩切線互相垂直;(2)當(dāng)a22b2<0,即b<a<b時(shí),橢圓C上不存在滿足條件的P點(diǎn)【例】已知點(diǎn)B(1,0),C(1,0),P是平面上一動(dòng)點(diǎn),且滿足(1)求點(diǎn)P的軌跡C對(duì)應(yīng)的方程;(2)已知點(diǎn)A(m,2)在曲線C上,過(guò)點(diǎn)A作曲線C的兩條弦AD和AE,且ADAE,判斷:直線DE是否過(guò)定點(diǎn)?試證明你的結(jié)論。(3)已知點(diǎn)A(m,2)在曲線C上,過(guò)點(diǎn)

10、A作曲線C的兩條弦AD,AE,且AD,AE的斜率k1、k2滿足k1·k2=2。求證:直線DE過(guò)定點(diǎn),并求出這個(gè)定點(diǎn)。解:(1)設(shè)【例】已知曲線,直線l過(guò)A(a,0)、B(0,b)兩點(diǎn),原點(diǎn)O到l的距離是()求雙曲線的方程;()過(guò)點(diǎn)B作直線m交雙曲線于M、N兩點(diǎn),若,求直線m的方程。解:()依題意, 由原點(diǎn)O到l的距離為,得 又 。 故所求雙曲線方程為()顯然直線m不與x軸垂直,設(shè)m方程為y=kx1,則點(diǎn)M、N坐標(biāo)()、()是方程組 的解消去y,得 依設(shè),由根與系數(shù)關(guān)系,知= = =23,k=±。 當(dāng)k=±時(shí),方程有兩個(gè)不等的實(shí)數(shù)根 故直線l方程為 【例】已知?jiǎng)狱c(diǎn)與

11、雙曲線的兩個(gè)焦點(diǎn)、的距離之和為定值,且的最小值為(1)求動(dòng)點(diǎn)的軌跡方程; (2)若已知,、在動(dòng)點(diǎn)的軌跡上且,求實(shí)數(shù)的取值范圍解:(1)由已知可得: , 所求的橢圓方程為 。 (2)方法一:由題知點(diǎn)D、M、N共線,設(shè)為直線m,當(dāng)直線m的斜率存在時(shí),設(shè)為k,則直線m的方程為 y = k x +3 代入前面的橢圓方程得 (4+9k 2) x 2 +54 k +45 = 0 由判別式 ,得。 再設(shè)M (x 1 , y 1 ), N ( x 2 , y 2),則一方面有,得 另一方面有 , 將代入式并消去 x 2可得,由前面知, ,解得 。 又當(dāng)直線m的斜率不存在時(shí),不難驗(yàn)證:,所以 為所求。方法二:同

12、上得 設(shè)點(diǎn)M (3cos,2sin),N (3cos,2sin) 則有由上式消去并整理得, 由于 , 解得為所求。 方法三:設(shè)法求出橢圓上的點(diǎn)到點(diǎn)D的距離的最大值為5,最小值為1。進(jìn)而推得的取值范圍為?!纠?如圖所示,拋物線y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線l與線段OA相交(不經(jīng)過(guò)點(diǎn)O或點(diǎn)A)且交拋物線于M、N兩點(diǎn),求AMN面積最大時(shí)直線l的方程,并求AMN的最大面積。解:由題意,可設(shè)l的方程為y=x+m,5m0。由方程組,消去y,得x2+(2m4)x+m2=0直線l與拋物線有兩個(gè)不同交點(diǎn)M、N,方程的判別式=(2m4)24m2=16(1m)0,解得m1,又5m0,

13、m的范圍為(5,0)設(shè)M(x1,y1),N(x2,y2)則x1+x2=42m,x1·x2=m2,|MN|=4。點(diǎn)A到直線l的距離為d=。S=2(5+m),從而S2=4(1m)(5+m)2=2(22m)·(5+m)(5+m)2()3=128。S8,當(dāng)且僅當(dāng)22m=5+m,即m=1時(shí)取等號(hào)。故直線l的方程為y=x1,AMN的最大面積為8?!纠恳阎p曲線C:2x2y2=2與點(diǎn)P(1,2)。(1)求過(guò)P(1,2)點(diǎn)的直線l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒(méi)有交點(diǎn)。(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在。解:(1)當(dāng)直線l的斜率不存在時(shí),l的方程為x=

14、1,與曲線C有一個(gè)交點(diǎn)。當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0(*)()當(dāng)2k2=0,即k=±時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn)()當(dāng)2k20,即k±時(shí)=2(k22k)24(2k2)(k2+4k6)=16(32k)當(dāng)=0,即32k=0,k=時(shí),方程(*)有一個(gè)實(shí)根,l與C有一個(gè)交點(diǎn)。當(dāng)0,即k,又k±,故當(dāng)k或k或k時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn)。當(dāng)0,即k時(shí),方程(*)無(wú)解,l與C無(wú)交點(diǎn)。綜上知:當(dāng)k=±,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn);當(dāng)

15、k,或k,或k時(shí),l與C有兩個(gè)交點(diǎn);當(dāng)k時(shí),l與C沒(méi)有交點(diǎn)。(2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12y12=2,2x22y22=2兩式相減得:2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=22(x1x2)=y1y1即kAB=2但漸近線斜率為±,結(jié)合圖形知直線AB與C無(wú)交點(diǎn),所以假設(shè)不正確,即以Q為中點(diǎn)的弦不存在?!纠恳阎p曲線G的中心在原點(diǎn),它的漸近線與圓相切過(guò)點(diǎn)作斜率為的直線,使得和交于兩點(diǎn),和軸交于點(diǎn),并且點(diǎn)在線段上,又滿足(1)求雙曲線的漸近線的方程;(2)求雙曲線的方程;(3)橢圓的中心

16、在原點(diǎn),它的短軸是的實(shí)軸如果中垂直于的平行弦的中點(diǎn)的軌跡恰好是的漸近線截在內(nèi)的部分,求橢圓的方程解:(1)設(shè)雙曲線的漸近線的方程為:,則由漸近線與圓相切可得:所以,雙曲線的漸近線的方程為:(2)由(1)可設(shè)雙曲線的方程為:把直線的方程代入雙曲線方程,整理得則 () ,共線且在線段上, ,即:,整理得:將()代入上式可解得:所以,雙曲線的方程為(3)由題可設(shè)橢圓的方程為:下面我們來(lái)求出中垂直于的平行弦中點(diǎn)的軌跡設(shè)弦的兩個(gè)端點(diǎn)分別為,的中點(diǎn)為,則兩式作差得:由于, 所以,所以,垂直于的平行弦中點(diǎn)的軌跡為直線截在橢圓S內(nèi)的部分又由題,這個(gè)軌跡恰好是的漸近線截在內(nèi)的部分,所以,所以,橢圓S的方程為:點(diǎn)

17、評(píng):解決直線與圓錐曲線的問(wèn)題時(shí),把直線投影到坐標(biāo)軸上(也即化線段的關(guān)系為橫坐標(biāo)(或縱坐標(biāo))之間的關(guān)系)是常用的簡(jiǎn)化問(wèn)題的手段;有關(guān)弦中點(diǎn)的問(wèn)題,常常用到“設(shè)而不求”的方法;判別式和韋達(dá)定理是解決直線與圓錐曲線問(wèn)題的常用工具)【例】已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1。()求橢圓C的方程;()若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的點(diǎn),=,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線。 需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,請(qǐng)?jiān)谔?寶.上.搜.索.寶.貝. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” 或者搜.店.鋪.“龍奇

18、跡【學(xué)習(xí)資料網(wǎng)】”解:()設(shè)橢圓長(zhǎng)半軸長(zhǎng)及半焦距分別為,由已知得,w。w。w。k。s。5。u。c。o。m 所以橢圓的標(biāo)準(zhǔn)方程為 ()設(shè),其中。由已知及點(diǎn)在橢圓上可得。整理得,其中。(i)時(shí)?;?jiǎn)得 所以點(diǎn)的軌跡方程為,軌跡是兩條平行于軸的線段。(ii)時(shí),方程變形為,其中當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、實(shí)軸在軸上的雙曲線滿足的部分。當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長(zhǎng)軸在軸上的橢圓滿足的部分;當(dāng)時(shí),點(diǎn)的軌跡為中心在原點(diǎn)、長(zhǎng)軸在軸上的橢圓;【例】已知橢圓的離心率為,過(guò)右焦點(diǎn)F的直線L與C相交于A、B兩點(diǎn),當(dāng)L的斜率為1時(shí),坐標(biāo)原點(diǎn)O到L的距離為。() 求a,b的值;() C上是否存在點(diǎn)P,使得當(dāng)L繞F轉(zhuǎn)到

19、某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與L的方程;若不存在,說(shuō)明理由考點(diǎn):本題考查解析幾何與平面向量知識(shí)綜合運(yùn)用能力,第一問(wèn)直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問(wèn)利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問(wèn)題,注意特殊情況的處理。解:()設(shè) 當(dāng)?shù)男甭蕿?時(shí),其方程為到的距離為 。 故 , 由 ,得 ,=()C上存在點(diǎn),使得當(dāng)繞轉(zhuǎn)到某一位置時(shí),有成立。由 ()知C的方程為+=6。 設(shè) () C成立的充要條件是且整理得 。 故 將 于是 , =,代入解得,此時(shí)。 于是=, 即因此, 當(dāng)時(shí), ;當(dāng)時(shí), 。()當(dāng)垂直于軸時(shí),由知,C上不存在點(diǎn)P使成立。綜上,C上存在點(diǎn)使成立,此時(shí)的方程為【例】已知橢圓:的右頂點(diǎn)為,過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為(I)求橢圓的方程;(II)設(shè)點(diǎn)在拋物線:上,在點(diǎn)處的切線與交于點(diǎn)當(dāng)線段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時(shí),求的最小值解:(I)由題意得所求的橢圓方程為 (II)不妨設(shè)則拋物線在點(diǎn)P處的切線斜率為,直線MN的方程為,將上式代入橢圓的方程中,得,即,因?yàn)橹本€MN與橢圓有兩個(gè)不同的交

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論