




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、小學數(shù)學教學方法指導良好的方法能使我們更好地發(fā)揮運用天賦的才能,而拙劣的方法 則可能阻礙才能的發(fā)揮。小學數(shù)學要培養(yǎng)學生的形象思維能力, 并在 此基礎(chǔ)上,為發(fā)展抽象思維能力打下堅實的基礎(chǔ)。 下面為大家分享一 些常用的小學數(shù)學教學方法。小學數(shù)學教學方法一、形象思維方法形象思維方法是指人們用形象思維來認識、解決問題的方法。它 的思維基礎(chǔ)是具體形象,并從具體形象展開來的思維過程。形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現(xiàn)一般,始終保留著對事物的直觀性。它的思 維過程表現(xiàn)為表象、類比、聯(lián)想、想象。它的思維品質(zhì)表現(xiàn)為對直觀 材料進行積極想象,對表象進行加工、提煉進而提示
2、出本質(zhì)、規(guī)律, 或求出對象。它的思維目標是解決實際問題,并且在解決問題當中提 高自身的思維能力。1、實物演示法利用身邊的實物來演示數(shù)學題目的條件和問題,及條件與條件, 條件與問題之間的關(guān)系,在此基礎(chǔ)上進行分析思考、尋求解決問題的 方法。這種方法可以使數(shù)學內(nèi)容形象化,數(shù)量關(guān)系具體化。比如:數(shù)學中的相遇問題。通過實物演示不僅能夠解決“同時、相向而行、相遇” 等術(shù)語,而且為學生指明了思維方向。再如,在一個圓形 (方形)水塘 周圍栽樹問題,如果能進行一個實際操作,效果要好得多。二年級數(shù)學教材中,“三個小朋友見面握手,每兩人握一次,共 要握幾次手”與“用三張不同的數(shù)字卡片擺成兩位數(shù),共可以擺成多 少個兩
3、位數(shù)”。像這樣的有關(guān)排列、組合的知識,在小學教學中,如 果實物演示的方法,是很難達到預(yù)期的教學目標的。特別是一些數(shù)學概念,如果沒有實物演示,小學生就不能真正掌 握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴于 實物演示作思維的基礎(chǔ)。所以,小學數(shù)學教師應(yīng)盡可能多地制作一些數(shù)學教 (學)具,而且 這些教(學)具用過后要好好保存,可以重復(fù)使用。這樣可以有效地提 高課堂教學效率,提升學生的學習成績。績。2、圖示法借助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。圖示法直觀可靠,便于分析數(shù)形關(guān)系,不受邏輯推導限制,思路 靈活開闊,但圖示依賴于人們對表象加工整理的可靠性上,一旦圖示與實
4、際情況不相符,易使在此基礎(chǔ)上的聯(lián)想、想象出現(xiàn)謬誤或走入誤 區(qū),最后導致錯誤的結(jié)果。比如有的數(shù)學教師愛徒手畫數(shù)學圖形,難 免造成不準確,使學生產(chǎn)生誤解。在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結(jié)果也就出來的;有的題,圖畫好了,題意學生也就明白 了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的 輔助手段。例1.把一根木頭鋸成3段需要24分鐘,鋸成6段需要多少分 鐘?(圖略)思維方法是:圖示法。思維方向是:鋸幾次,每次用幾分鐘。思路是:鋸3段鋸了幾次,每次用幾分鐘,鋸 6段鋸了幾次, 需要多少分鐘。例2 .判斷:等腰三角形中,點D是底邊BC的中點,圖甲的面積 比
5、圖乙的面積大,圖甲的周長比圖乙的周長長。(圖略)思維方法:圖示法。思維方向:先比較面積,再比較周長。思路:作條輔助線。圖甲占的面積大,圖乙所占面積小,所以“圖 甲的面積比圖乙的面積大”是正確的。線段 AD比曲線AD短,所以 “圖甲的周長比圖乙的周長長”是錯誤的。3、列表法運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表 法。列表法清晰明了,便于分析比較、提示規(guī)律,也有利于記憶。它 的局限性在于求解范圍小,適用題型狹窄,大多跟尋找規(guī)律或顯示規(guī) 律有關(guān)。比如,正、反比例的內(nèi)容,整理數(shù)據(jù),乘法口訣,數(shù)位順序 等內(nèi)容的教學大都采用“列表法”。用列表法解決傳統(tǒng)數(shù)學問題:雞兔同籠問題。制作三個表格
6、:第 一張表格是逐一舉例法,根據(jù)雞與兔共 20只的條件,假設(shè)雞只有1 只,那么兔就有19只,腿共有78條…… 這樣逐一列舉, 直至尋找到所求的答案;第二張表格是列舉了幾個以后發(fā)現(xiàn)了只數(shù)與 腿數(shù)的規(guī)律,從而減少了列舉的次數(shù);第三張表格是從中間開始列舉, 由于雞與兔共20只,所以各取10只,接著根據(jù)實際的數(shù)據(jù)情況確 定列舉的方向。4、探索法按照一定方向,通過嘗試來摸索規(guī)律、探求解決問題思路的方法 叫做探究法。我國著名數(shù)學家華羅庚說過,在數(shù)學里,“難處不在于有了公式去證明,而在于沒有公式之前,怎樣去找出公式來?!碧K霍姆林斯基說過:在人的心靈深處,都有一種根
7、深蒂固的需要,這就是 希望自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中, 這種需要特別強烈?!皩W習要以探究為核心”,是新課程的基本理念之 一。人們在難以把問題轉(zhuǎn)化為簡單的、基本的、熟悉的、典型的問題 時,常常采取的一種好方法就是探究、嘗試。第一、探究方向要準確,興趣要高漲,切忌胡亂嘗試或形式主義 的探究。例如,教學“比例尺”時,教師創(chuàng)設(shè)“學生出題考老師”的 教學情境,師:“現(xiàn)在我們考試好不好?”學生一聽:很奇怪,正當學 生疑惑之時,教師說:“今天改變過去的考試方法,由你們出題考老 師,愿意嗎?”學生聽后很感興趣。教師說:“這里有一幅地圖,你們 用直尺任意量出兩地的距離,我都能很快地告
8、訴你們這兩地之間的實 際距離,相信嗎?”于是學生紛紛上臺度量、報數(shù),教師都一個接一 個地回答對應(yīng)的實際距離。學生這時更感到奇怪,異口同聲地說:“老 師您快告訴我們吧,您是怎樣算的?”教師說:“其實呀,有一位好朋 友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?”于是引出所要 學習的內(nèi)容“比例尺”。第二、定向猜測,反復(fù)實踐,在不斷分析、調(diào)整中尋找規(guī)律。例3 .找規(guī)律填數(shù)。(1)1、4、 、10、13、 、19;(2)2、8、18、32、 、72、。第三,獨立探究與合作探究結(jié)合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。小學數(shù)學教學活動中,教師應(yīng)盡量創(chuàng)
9、設(shè)讓學生去探究的情景, 創(chuàng) 造讓學生去探究的機會,鼓勵有探究精神和習慣的學生。5、觀察法通過大量具體事例,歸納發(fā)現(xiàn)事物的一般規(guī)律的方法叫做觀察 法。巴浦洛夫說:"應(yīng)當先學會觀察,不學會觀察永遠當不了科學 家.”小學數(shù)學“觀察”的內(nèi)容一般有:數(shù)字的變化規(guī)律及位置特點; 條件與結(jié)論之間的關(guān)系;題目的結(jié)構(gòu)特點:圖形的特點及大小、 位置關(guān)系。如: 觀察一組算式:25×4=4×25, 62×11=11×62100×6=6×100…&hel
10、lip;歸納出乘法交換率:在乘法算式里,交換兩個因數(shù)的位置,積不變。“觀察”的要求:第一、觀察要細致、準確。例4 .找出下列各題錯在哪里,并改正。(1)25×16=25×(4×4)=(25×4)&ti mes;(25×4);(2)18×36+18×64=(18+18)×(36+64)例5 .直接寫出下列各題的得數(shù):(1)3.6+6.4 (2)3.6+6.04(3)125×57×0.04 (
11、4)(351-37-13)÷5第二、科學觀察??茖W觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到“有 序”觀察:(1)面;形狀、個數(shù)、面與面之間的關(guān)系;(2)棱;棱的形成、 條數(shù)、棱與棱之間的關(guān)系(相對的棱相等;相對的棱有四條;長方體的棱 可以分為三組);(3)頂點;頂點的形成、個數(shù),認識頂點的一個重要作 用是引出長方體長、寬、高的概念。第三,觀察必定與思考結(jié)合。6、典型法針對題目去聯(lián)想已經(jīng)解過的典型問題的解題規(guī)律,從而找出解題思路的方法叫做典型法。典型是相對于普遍而言的。解決數(shù)學問題, 有些需要用一般方法,有些則需要用特殊
12、(典型)方法。比如,歸一、倍比和歸總算法、行程、工程、消同求異、平均數(shù)等。運用典型法必須注意:(1)要掌握典型材料的關(guān)鍵及規(guī)律。例7.已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的 7 倍。爸爸、兒子今年分別是多少歲?關(guān)鍵點在:爸爸比兒子大30歲, 爸爸的年齡比兒子多幾倍。典型題都有典型解法,要想真正學好數(shù)學, 即要理解和掌握一般思路和解法,還要學會典型解法。(2)熟悉典型材料,并能敏捷地聯(lián)想到所適用的典型,從而確定 所需要的解題方法。例8.見到“某城市有一條公共汽車線路,長 16500米,平均每 隔500米設(shè)一個車站。這條線路需要設(shè)多少個車站 ?”這樣題目,就 應(yīng)該聯(lián)想到上面所講到的“鋸
13、木頭用多少分鐘”的典型問題。(3)典型和技巧相聯(lián)系。例9.甲乙兩個工程隊共有82人,如果從乙隊調(diào)8人到甲隊,兩 隊人數(shù)正好相等。甲乙兩隊原來各有多少人 遍題目的技巧:調(diào)前、 調(diào)后兩隊總?cè)藬?shù)沒變。先算調(diào)后各隊人數(shù),再算原來各隊人數(shù)。7、放縮法通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴于知識的拓展能力及其想象能力。例16.求12和9的最小公倍數(shù)。求兩個數(shù)的最小公倍數(shù)一般的方法是“短除式”方法,它是根據(jù) 這兩個數(shù)的質(zhì)因數(shù)情況來求出它們的最小公倍數(shù)的。但也有兩個典型 方法:一是“如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的最小公倍數(shù)就是 它們的乘積”;二是“如果大數(shù)是小數(shù)的倍
14、數(shù),那么這兩個數(shù)的最小 公倍數(shù)就是大數(shù)”?,F(xiàn)在我們根據(jù)典型方法二,進行擴展運用,放大“大數(shù)”來求12和9的最小公倍數(shù)。12不是9的倍數(shù),就把它放大2倍,得24 ,仍然不是9的倍數(shù), 放大3倍,得36, 36是9的倍數(shù),那么,12和9的最小公倍數(shù)就 是36。這種方法的關(guān)鍵點在于,如果大數(shù)不是小數(shù)的倍數(shù),就把大 數(shù)翻倍,但一定從2倍開始,如果一下子擴大6倍,得數(shù)是它們的 公倍數(shù),而不是最小的了。例17.期末考試,小剛的語文成績和英語成績的和是 197分;語文 和數(shù)學成績加起來是199分;數(shù)學和英語成績加起來是196分。想一 想,小剛的哪科成績最高?你能算出小剛的各科成績嗎?思路一:“放大”。通過觀
15、察發(fā)現(xiàn),語、數(shù)、外三科成績在題目中 各出現(xiàn)兩次,我們求197+199+196 的和,這個和是“語數(shù)外成績 的2倍”,除以2得三科成績之和,再減去任意兩科的成績,就得到 第三科的成績。思路二:“縮小”。我們用語數(shù)成績的和減去語外的成績, 199-197=2(分),這是數(shù)學減英語成績的差。數(shù)學和英語的和是196 分,再求數(shù)學的分數(shù)就不難了。放縮法有時運用在估算和驗算上。例18 .檢驗下列計算結(jié)果是否正確?(1)18.7×6.9=137.3; (2)17485÷6.6=3609.對于(1)用總體估計,放大至19×7=133 ,估計得數(shù)要小
16、 于133 ,所以本題結(jié)果錯誤。對于(2)用最高位估計,把17看作18, 把6.6看作6, 18÷6=3 ,顯然答數(shù)的最高位不會是 3,故本 題結(jié)果也不正確。例19.把雞和兔放在一起,共有48個頭,114只足,問雞、兔 各有幾只。這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔 的足數(shù)縮小2倍,那么,雞的足數(shù)和它的頭數(shù)一樣,而兔的足數(shù)是它 的只數(shù)的2倍。所以,總的足數(shù)縮小2倍后,雞和兔的總足數(shù)與它 們的總只數(shù)相差數(shù)就是兔的只數(shù)。8、驗證法你的結(jié)果正確嗎?不能只等教師的評判,重要的是自己心里要清 楚,對自己的學習有一個清楚的評價,這是優(yōu)秀學生必備的學習品質(zhì)。驗證法應(yīng)
17、用范圍比較廣泛,是需要熟練掌握的一項基本功。 應(yīng)當 通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養(yǎng) 成嚴謹細致的好習慣。(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗, 加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。(2)代入檢驗。解方程的結(jié)果正確嗎?用代入法,看等號兩邊是否 相等。還可以把結(jié)果當條件進行逆向推算。(3)是否符合實際?!扒Ы倘f教教人求真,千學萬學學做真人”陶 行知先生的話要落實在教學中。 比如,做一套衣服需要4米布,現(xiàn)有 布 31 米,可以做多少套衣服?有學生這樣做: 31÷4≈8(套)按照“四舍五入法”保留近
18、似數(shù)無疑是正確的,但和實際不符合, 做衣服的剩余布料只能舍去。教學中,常識性的東西予以重視。做衣 服套數(shù)的近似計算要用“去尾法”。(4)驗證的動力在猜想和質(zhì)疑。牛頓曾說過:“沒有大膽的猜想, 就做不出偉大的發(fā)現(xiàn)?!?“猜”也是解決問題的一種重要策略??梢蚤_ 拓學生的思維、激發(fā)“我要學”的愿望。為了避免瞎猜,一定 學會 驗證。驗證猜測結(jié)果是否正確,是否符合要求。如不符合要求,及時 調(diào)整猜想,直到解決問題。二、抽象思維方法運用概念、判斷、推理來反映現(xiàn)實的思維過程,叫抽象思維,也 叫邏輯思維。抽象思維又分為:形式思維和辯證思維??陀^現(xiàn)實有其相對穩(wěn)定 的一面,我們就可以采用形式思維的方式;客觀存在也有
19、其不斷發(fā)展 變化的一面,我們可以采用辯證思維的方式。 形式思維是辯證思維的 基礎(chǔ)。形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。辯證思維能力:聯(lián)系、發(fā)展變化、對立統(tǒng)一律、質(zhì)量互變律、否 定之否定律。小學數(shù)學要培養(yǎng)學生初步的抽象思維能力,重點突出在:(1)思維品質(zhì)上,應(yīng)該具備思維的敏捷性、靈活性、聯(lián)系性和創(chuàng)造性。(2) 思維方法上,應(yīng)該學會有條有理,有根有據(jù)地思考。 (3)思維要求上, 思路清晰,因果分明,言必有據(jù),推理嚴密。 (4)思維訓練上,應(yīng)該 要求:正確地運用概念,恰當?shù)叵屡袛?,合乎邏輯地推理?、對照法如何正確地理解和運用數(shù)學概念?小學數(shù)學常用的方法就是對照 法。根據(jù)數(shù)學題意
20、,對照概念、性質(zhì)、定律、法則、公式、名詞、術(shù) 語的含義和實質(zhì),依靠對數(shù)學知識的理解、記憶、辨識、再現(xiàn)、遷移 來解題的方法叫做對照法。這個方法的思維意義就在于,訓練學生對數(shù)學知識的正確理解、 牢固記憶、準確辨識。例20.個連續(xù)自然數(shù)的和是18,則這三個自然數(shù)從小到大分別是 多少?對照自然數(shù)的概念和連續(xù)自然數(shù)的性質(zhì)可以知道: 三個連續(xù)自然 數(shù)和的平均數(shù)就是這三個連續(xù)自然數(shù)的中間那個數(shù)。例21.判斷:能被2除盡的數(shù)一定是偶數(shù)。這里要對照“除盡”和“偶數(shù)”這兩個數(shù)學概念。只有這兩個概 念全理解了,才能做出正確判斷。10、公式法運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由 一般到特殊的演繹思
21、維。公式法簡便、有效,也是小學生學習數(shù)學必 須學會和掌握的一種方法。但一定要讓學生對公式、定律、規(guī)則、法 則有一個正確而深刻的理解,并能準確運用。例 22.計算 59×37+12×59+5959×37+12×59+59=59×(37+12+1) ………… 運用乘法分配律=59×50…………運用 加法計算
22、法則=(60-1) ×50………… 運用數(shù)的組成規(guī)則=60×50-1×50…………運用乘法分配律=3000-50…………運用乘法計算法則=2950………… 運用減法計算法則11.比較法通過
23、對比數(shù)學條件及問題的異同點,研究產(chǎn)生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。比較法要注意:(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也 就是說,比較要完整。(2)找聯(lián)系與區(qū)別,這是比較的實質(zhì)。(3)必須在同一種關(guān)系下(同一種標準)進行比較,這是“比較”的 基本條件。(4)要抓住主要內(nèi)容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出(5)因為數(shù)學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結(jié)論的對或錯。例23.填空:0.75的最高位是(),這個數(shù)小數(shù)部分的最高位是(); 十分位的數(shù)4與十位上的數(shù)4相比,它們的()相同,()不同,前者比后者小了(
24、)。這道題的意圖就是要對“一個數(shù)的最高位和小數(shù)部分的最高位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。例24.六年級同學種一批樹,如果每人種 5棵,則剩下75棵樹 沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?這是兩種方案的比較。相同點是:六年級人數(shù)不變才目異點是:兩種方案中的條件不一樣。找聯(lián)系:每人種樹棵數(shù)變化了,種樹的總棵數(shù)也發(fā)生了變化。找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為 90÷2=45( 人)。12、分類法俗語:物以類聚,人以群分。根據(jù)事物的共同點和差異點將事物區(qū)分為不同種類的方法,叫做分類法。
25、分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點將它們合為 較大的類,又依據(jù)差異點將較大的類再分為較小的類。分類即要注意大類與小類之間的不同層次, 又要做到大類之中的 各小類不重復(fù)、不遺漏、不交叉例25.自然數(shù)按約數(shù)的個數(shù)來分,可分成幾類 ?答:可分為三類。(1)只有一個約數(shù)的數(shù),它是一個單位數(shù),只 有一個數(shù)1;(2)有兩個約數(shù)的,也叫質(zhì)數(shù),有無數(shù)個;(3)有三個約數(shù)的, 也叫合數(shù),也有無數(shù)個。小學數(shù)學應(yīng)用題教學方法一、幫助學生養(yǎng)成良好的審題習慣。應(yīng)用的難易不僅取決于數(shù)據(jù)的多少,往往是由應(yīng)用題的情節(jié)部分 和數(shù)量關(guān)系交織在一起的復(fù) 雜程度所定。同時題目中的敘述是書面 語言,對小學生的理解會有一定的困難
26、,所以解題的首要環(huán)節(jié)和前提就是理解題意,即審題。審題就要讀題,讀題必須認真、仔細,通 過邊讀邊 想掌握題中講的是什么事情,經(jīng)過怎樣,這就是我們常說 的應(yīng)用題的條件。結(jié)果怎樣,則是 所講的問題。要想弄清楚題中給 定的條件是什么,要求問題是什么?不僅要邊讀邊想,在必要情況下 還要借助簡單的實物圖或線段圖來輔助理解, 這樣能把題目里難以理 解的內(nèi)容或抽 象的概念簡單化,具體化,把抽象的東西擺在眼前, 便于讓學生容易理解和掌握其題意。例如,小學三年級課本中有這樣一道題:雞有24倍,歡雞和鴨 一共有多少只?題中哪些數(shù)據(jù)與問題有直接聯(lián)系,哪些沒有直接聯(lián)系, 如果在邊讀邊想基礎(chǔ)上再加簡 單的線段圖幫助分析,學生就更容易 知道條件是什么,要求的問題是什么了,否則對于抽象概念能力較差的部分學生就難以理解了。實踐證明,學生不會解答某一應(yīng)用題, 往往就是對二、幫助學生掌握正確的解題步驟。雖然概括解題步驟是在學習了復(fù)合應(yīng)用題時才進行的, 但在開始 應(yīng)用題教學時就要注意引導學生按正確的解題步驟解答應(yīng)用題,逐 步養(yǎng)成良好的習慣,特別是檢查驗算和寫好答案的習慣。一道題做得對不對,學生要能自我評價,對的強化,不對的反饋 糾正,這實際上是一個推理 論證的過程。完成列式計算只解決了 “怎 樣解答”的問題,而推理論證是解決“為什么這樣解答”的問題。然而很多小學生不善于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年心理咨詢與治療技術(shù)考試試卷及答案
- 2025年文化項目策劃與執(zhí)行考試試卷及答案
- 2025年物業(yè)管理師資格考試卷及答案
- 2025年全國研究生入學考試試卷及答案
- 2025年廣告學入門考試試題及答案
- 2025年健康科技與生物醫(yī)學工程職業(yè)考試試卷及答案
- 2025年暖通空調(diào)工程師職業(yè)資格考試題及答案
- 2025年勞動人事爭議處理課程考試題目及答案
- 2025年經(jīng)營管理與決策課程考試題目及答案
- 法律碩士(專業(yè)基礎(chǔ)課)模擬試卷124
- GB/T 3301-1999日用陶瓷的容積、口徑誤差、高度誤差、重量誤差、缺陷尺寸的測定方法
- 偷影子的人-大學語文PPT
- GB 6944-2005危險貨物分類和品名編號
- GB 4789.3-2016食品安全國家標準食品微生物學檢驗大腸菌群計數(shù)
- GB 11291-1997工業(yè)機器人安全規(guī)范
- 裝飾窗簾安裝內(nèi)部驗收單
- 三角掛籃施工方案剖析
- 同等學力哲學學科綜合考試大綱思考題匯總
- 2023年中醫(yī)兒科學考試題庫及答案(通用版)
- 骨科疑難病種清單(2021年版)
- 農(nóng)村常用法律法規(guī)知識講座課件(村干部培訓)
評論
0/150
提交評論