




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高中數(shù)學(xué)必修+選修知識(shí)點(diǎn)歸納新課標(biāo)人教A版 專心-專注-專業(yè)一、集合1、 把研究的對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫做集合。集合三要素:確定性、互異性、無序性。2、 只要構(gòu)成兩個(gè)集合的元素是一樣的,就稱這兩個(gè)集合相等。3、 常見集合:正整數(shù)集合:或,整數(shù)集合:,有理數(shù)集合:,實(shí)數(shù)集合:.4、集合的表示方法:列舉法、描述法.§1.1.2、集合間的基本關(guān)系1、 一般地,對(duì)于兩個(gè)集合A、B,如果集合A中任意一個(gè)元素都是集合B中的元素,則稱集合A是集合B的子集。記作.2、 如果集合,但存在元素,且,則稱集合A是集合B的真子集.記作:AB.3、 把不含任何元素的集
2、合叫做空集.記作:.并規(guī)定:空集合是任何集合的子集.4、 如果集合A中含有n個(gè)元素,則集合A有個(gè)子集,個(gè)真子集.§1.1.3、集合間的基本運(yùn)算1、 一般地,由所有屬于集合A或集合B的元素組成的集合,稱為集合A與B的并集.記作:.2、 一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集.記作:.3、全集、補(bǔ)集?§1.2.1、函數(shù)的概念1、 設(shè)A、B是非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有惟一確定的數(shù)和它對(duì)應(yīng),那么就稱為集合A到集合B的一個(gè)函數(shù),記作:.2、 一個(gè)函數(shù)的構(gòu)成要素為:定義域、對(duì)應(yīng)關(guān)系、值域.如果兩個(gè)函
3、數(shù)的定義域相同,并且對(duì)應(yīng)關(guān)系完全一致,則稱這兩個(gè)函數(shù)相等.§1.2.2、函數(shù)的表示法1、 函數(shù)的三種表示方法:解析法、圖象法、列表法.§1.3.1、單調(diào)性與最大(?。┲?、注意函數(shù)單調(diào)性的證明方法:(1)定義法:設(shè)那么上是增函數(shù);上是減函數(shù).步驟:取值作差變形定號(hào)判斷格式:解:設(shè)且,則:= (2)導(dǎo)數(shù)法:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),若,則為增函數(shù);若,則為減函數(shù).§1.3.2、奇偶性1、 一般地,如果對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就稱函數(shù)為偶函數(shù).偶函數(shù)圖象關(guān)于軸對(duì)稱.2、 一般地,如果對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就稱函數(shù)為奇函數(shù).奇函數(shù)圖象關(guān)于原點(diǎn)
4、對(duì)稱.知識(shí)鏈接:函數(shù)與導(dǎo)數(shù)1、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是.2、幾種常見函數(shù)的導(dǎo)數(shù); ; ; ; ;3、導(dǎo)數(shù)的運(yùn)算法則(1). (2). (3).4、復(fù)合函數(shù)求導(dǎo)法則復(fù)合函數(shù)的導(dǎo)數(shù)和函數(shù)的導(dǎo)數(shù)間的關(guān)系為,即對(duì)的導(dǎo)數(shù)等于對(duì)的導(dǎo)數(shù)與對(duì)的導(dǎo)數(shù)的乘積.解題步驟:分層層層求導(dǎo)作積還原.5、函數(shù)的極值 (1)極值定義:極值是在附近所有的點(diǎn),都有,則是函數(shù)的極大值; 極值是在附近所有的點(diǎn),都有,則是函數(shù)的極小值.(2)判別方法:圖象性質(zhì)(1)定義域:R(2)值域:(0,+)(3)過定點(diǎn)(0,1),即x=0時(shí),y=1(4)在 R上是增函數(shù)(4)在R上是減
5、函數(shù)(5);(5);如果在附近的左側(cè)0,右側(cè)0,那么是極大值;如果在附近的左側(cè)0,右側(cè)0,那么是極小值.6、求函數(shù)的最值 (1)求在內(nèi)的極值(極大或者極小值)(2)將的各極值點(diǎn)與比較,其中最大的一個(gè)為最大值,最小的一個(gè)為極小值。§2.1.1、指數(shù)與指數(shù)冪的運(yùn)算1、 一般地,如果,那么叫做 的次方根。其中.2、 當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.3、 我們規(guī)定: ;4、 運(yùn)算性質(zhì): ;.§2.1.2、指數(shù)函數(shù)及其性質(zhì)1、記住圖象:2、性質(zhì):§2.2.1、對(duì)數(shù)與對(duì)數(shù)運(yùn)算1、指數(shù)與對(duì)數(shù)互化式:;2、對(duì)數(shù)恒等式:.3、基本性質(zhì):,.4、運(yùn)算性質(zhì):當(dāng)時(shí):;.5、換底公式:.6、重
6、要公式:7、倒數(shù)關(guān)系:.§2.2.2、對(duì)數(shù)函數(shù)及其性質(zhì)1、記住圖象:2、性質(zhì):圖象性質(zhì)(1)定義域:(0,+)(2)值域:R(3)過定點(diǎn)(1,0),即x=1時(shí),y=0(4)在 (0,+)上是增函數(shù)(4)在(0,+)上是減函數(shù)(5);(5);§2.3、冪函數(shù)1、幾種冪函數(shù)的圖象:§3.1.1、方程的根與函數(shù)的零點(diǎn)1、方程有實(shí)根 函數(shù)的圖象與軸有交點(diǎn) 函數(shù)有零點(diǎn).2、 零點(diǎn)存在性定理:如果函數(shù)在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點(diǎn),即存在,使得,這個(gè)也就是方程的根.第一章:空間幾何體1、空間幾何體的結(jié)構(gòu)常見的多面體有:棱柱、棱錐、棱臺(tái);常
7、見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球。棱柱:有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱臺(tái):用一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺(tái)。2、空間幾何體的三視圖和直觀圖把光由一點(diǎn)向外散射形成的投影叫中心投影,中心投影的投影線交于一點(diǎn);把在一束平行光線照射下的投影叫平行投影,平行投影的投影線是平行的。3、空間幾何體的表面積與體積圓柱側(cè)面積;圓錐側(cè)面積:圓臺(tái)側(cè)面積:體積公式:;球的表面積和體積:.第二章:點(diǎn)、直線、平面之間的位置關(guān)系1、公理1:如果一條直線上兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。
8、2、公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。3、公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。4、公理4:平行于同一條直線的兩條直線平行.5、定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。6、線線位置關(guān)系:平行、相交、異面。7、線面位置關(guān)系:直線在平面內(nèi)、直線和平面平行、直線和平面相交。8、面面位置關(guān)系:平行、相交。9、線面平行:判定:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行(簡稱線線平行,則線面平行)。性質(zhì):一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行(簡稱線面平行,則線線平行)。
9、10、面面平行:判定:一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行(簡稱線面平行,則面面平行)。性質(zhì):如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行(簡稱面面平行,則線線平行)。11、線面垂直:定義:如果一條直線垂直于一個(gè)平面內(nèi)的任意一條直線,那么就說這條直線和這個(gè)平面垂直。判定:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直(簡稱線線垂直,則線面垂直)。性質(zhì):垂直于同一個(gè)平面的兩條直線平行。12、面面垂直:定義:兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說這兩個(gè)平面互相垂直。判定:一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直(簡稱線面垂直,
10、則面面垂直)。性質(zhì):兩個(gè)平面互相垂直,則一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。(簡稱面面垂直,則線面垂直)。直線與方程1、傾斜角與斜率:2、直線方程:點(diǎn)斜式:斜截式:兩點(diǎn)式:截距式:一般式:3、對(duì)于直線:有:;和相交;和重合;.4、對(duì)于直線:有:;和相交;和重合;.5、兩點(diǎn)間距離公式:6、點(diǎn)到直線距離公式:7、兩平行線間的距離公式:與:平行,則第四章:圓與方程1、圓的方程:標(biāo)準(zhǔn)方程:其中圓心為,半徑為.一般方程:.其中圓心為,半徑為.2、直線與圓的位置關(guān)系直線與圓的位置關(guān)系有三種:;. 弦長公式:3、兩圓位置關(guān)系:外離:;外切:;相交:;內(nèi)切:;內(nèi)含:.3、空間中兩點(diǎn)間距離公式:統(tǒng)計(jì)1、
11、抽樣方法:簡單隨機(jī)抽樣(總體個(gè)數(shù)較少)系統(tǒng)抽樣(總體個(gè)數(shù)較多)分層抽樣(總體中差異明顯)注意:在N個(gè)個(gè)體的總體中抽取出n個(gè)個(gè)體組成樣本,每個(gè)個(gè)體被抽到的機(jī)會(huì)(概率)均為。2、總體分布的估計(jì):一表二圖:頻率分布表數(shù)據(jù)詳實(shí)頻率分布直方圖分布直觀頻率分布折線圖便于觀察總體分布趨勢(shì)注:總體分布的密度曲線與橫軸圍成的面積為1。莖葉圖:莖葉圖適用于數(shù)據(jù)較少的情況,從中便于看出數(shù)據(jù)的分布,以及中位數(shù)、眾位數(shù)等。個(gè)位數(shù)為葉,十位數(shù)為莖,右側(cè)數(shù)據(jù)按照從小到大書寫,相同的數(shù)據(jù)重復(fù)寫。3、總體特征數(shù)的估計(jì):平均數(shù):;取值為的頻率分別為,則其平均數(shù)為;注意:頻率分布表計(jì)算平均數(shù)要取組中值。方差與標(biāo)準(zhǔn)差:一組樣本數(shù)據(jù)方
12、差:;標(biāo)準(zhǔn)差:注:方差與標(biāo)準(zhǔn)差越小,說明樣本數(shù)據(jù)越穩(wěn)定。平均數(shù)反映數(shù)據(jù)總體水平;方差與標(biāo)準(zhǔn)差反映數(shù)據(jù)的穩(wěn)定水平。線性回歸方程變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系;制作散點(diǎn)圖,判斷線性相關(guān)關(guān)系線性回歸方程:(最小二乘法)注意:線性回歸直線經(jīng)過定。第三章:概率1、隨機(jī)事件及其概率:隨機(jī)事件A的概率:.2、古典概型:特點(diǎn):所有的基本事件只有有限個(gè);每個(gè)基本事件都是等可能發(fā)生。古典概型概率計(jì)算公式:一次試驗(yàn)的等可能基本事件共有n個(gè),事件A包含了其中的m個(gè)基本事件,則事件A發(fā)生的概率.3、幾何概型:幾何概型的特點(diǎn):所有的基本事件是無限個(gè);每個(gè)基本事件都是等可能發(fā)生。幾何概型概率計(jì)算公式:;其中測(cè)度根據(jù)
13、題目確定,一般為線段、角度、面積、體積等。4、互斥事件:不可能同時(shí)發(fā)生的兩個(gè)事件稱為互斥事件;如果事件任意兩個(gè)都是互斥事件,則稱事件彼此互斥。如果事件A,B互斥,那么事件A+B發(fā)生的概率,等于事件A,B發(fā)生的概率的和,即:如果事件彼此互斥,則有:對(duì)立事件:兩個(gè)互斥事件中必有一個(gè)要發(fā)生,則稱這兩個(gè)事件為對(duì)立事件。事件的對(duì)立事件記作對(duì)立事件一定是互斥事件,互斥事件未必是對(duì)立事件。必修4數(shù)學(xué)知識(shí)點(diǎn)第一章:三角函數(shù)§1.1.1、任意角1、 正角、負(fù)角、零角、象限角的概念.2、 與角終邊相同的角的集合: .§1.1.2、弧度制1、 把長度等于半徑長的弧所對(duì)的圓心角叫做1弧度的角.2、
14、 .3、弧長公式:.4、扇形面積公式:.§1.2.1、任意角的三角函數(shù)1、 設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn),那么:2、 設(shè)點(diǎn)為角終邊上任意一點(diǎn),那么:(設(shè)) ,3、 ,在四個(gè)象限的符號(hào)和三角函數(shù)線的畫法.§1.2.2、同角三角函數(shù)的基本關(guān)系式1、 平方關(guān)系:.2、 商數(shù)關(guān)系:.3、 倒數(shù)關(guān)系:§1.3、三角函數(shù)的誘導(dǎo)公式(概括為“奇變偶不變,符號(hào)看象限”)1、 誘導(dǎo)公式一:(其中:)2、 誘導(dǎo)公式二: 3、誘導(dǎo)公式三: 4、誘導(dǎo)公式四: 5、誘導(dǎo)公式五: 6、誘導(dǎo)公式六: §1.4.1、正弦、余弦函數(shù)的圖象和性質(zhì)1、記住正弦、余弦函數(shù)圖象:2、能
15、夠?qū)φ請(qǐng)D象講出正弦、余弦函數(shù)的相關(guān)性質(zhì):定義域、值域、最大最小值、對(duì)稱軸、對(duì)稱中心、奇偶性、單調(diào)性、周期性.3、會(huì)用五點(diǎn)法作圖.在上的五個(gè)關(guān)鍵點(diǎn)為: §1.4.3、正切函數(shù)的圖象與性質(zhì)1、記住正切函數(shù)的圖象:3、正切函數(shù)的相關(guān)性質(zhì):定義域、值域、對(duì)稱中心、奇偶性、單調(diào)性、周期性.周期函數(shù)定義:對(duì)于函數(shù),如果存在一個(gè)非零常數(shù)T,使得當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期.圖表歸納:正弦、余弦、正切函數(shù)的圖像及其性質(zhì)圖象定義域值域-1,1-1,1最值無周期性奇偶性奇偶奇單調(diào)性在上單調(diào)遞增在上單調(diào)遞減在上單調(diào)遞增在上單調(diào)遞減在上單調(diào)遞增對(duì)稱性對(duì)
16、稱軸方程:對(duì)稱中心對(duì)稱軸方程:對(duì)稱中心無對(duì)稱軸對(duì)稱中心§1.5、函數(shù)的圖象1、對(duì)于函數(shù):的周期2、能夠講出函數(shù)的圖象與的圖象之間的平移伸縮變換關(guān)系. 先平移后伸縮: 平移個(gè)單位 (左加右減) 橫坐標(biāo)不變 縱坐標(biāo)變?yōu)樵瓉淼腁倍 縱坐標(biāo)不變 橫坐標(biāo)變?yōu)樵瓉淼谋镀揭苽€(gè)單位 (上加下減) 先伸縮后平移: 橫坐標(biāo)不變 縱坐標(biāo)變?yōu)樵瓉淼腁倍 縱坐標(biāo)不變 橫坐標(biāo)變?yōu)樵瓉淼谋镀揭苽€(gè)單位 (左加右減)平移個(gè)單位 (上加下減)3、三角函數(shù)的周期,對(duì)稱軸和對(duì)稱中心函數(shù),xR及函數(shù),xR(A,為常數(shù),且A0)的周期;函數(shù),(A,為常數(shù),且A0)的周期.對(duì)于和來說,對(duì)稱中心與零點(diǎn)相聯(lián)系,對(duì)稱軸與最值點(diǎn)聯(lián)系.求
17、函數(shù)圖像的對(duì)稱軸與對(duì)稱中心,只需令與解出即可. 4、由圖像確定三角函數(shù)的解析式利用圖像特征:,.要根據(jù)周期來求,要用圖像的關(guān)鍵點(diǎn)來求.第三章、三角恒等變換§3.1.2、兩角和與差的正弦、余弦、正切公式1、2、3、4、5、.6、.§3.1.3、二倍角的正弦、余弦、正切公式1、, 變形: .2、.變形如下: 升冪公式:降冪公式:3、.4、§3.2、簡單的三角恒等變換1、 注意正切化弦、平方降次.2、輔助角公式 (其中輔助角所在象限由點(diǎn)的象限決定, ).第二章:平面向量1、 三角形加法法則和平行四邊形加法法則.2、 三角形減法法則和平行四邊形減法法則.向量數(shù)乘運(yùn)算及其幾
18、何意義1、 規(guī)定:實(shí)數(shù)與向量的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘.記作:,它的長度和方向規(guī)定如下: ,當(dāng)時(shí), 的方向與的方向相同;當(dāng)時(shí), 的方向與的方向相反.2、 平面向量共線定理:向量與 共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使.平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)任一向量,有且只有一對(duì)實(shí)數(shù),使.§2.3.2、平面向量的正交分解及坐標(biāo)表1、 .§2.3.3、平面向量的坐標(biāo)運(yùn)算1、 設(shè),則: ,.2、則: .ABC中: 1、設(shè),則線段AB中點(diǎn)坐標(biāo)為,ABC的重心坐標(biāo)為.§2.4.1、平面向量數(shù)量積1、 .2、 在方向上的投影為:.3、
19、.4、 .5、 .§2.4.2、平面向量數(shù)量積的坐標(biāo)表示、模、夾角1、 設(shè),則:2、 設(shè),則:.3、 兩向量的夾角公式 必修5數(shù)學(xué)知識(shí)點(diǎn)第一章:解三角形1、正弦定理:.(其中為外接圓的半徑)用途:已知三角形兩角和任一邊,求其它元素; 已知三角形兩邊和其中一邊的對(duì)角,求其它元素。2、余弦定理:用途:已知三角形兩邊及其夾角,求其它元素;已知三角形三邊,求其它元素。做題中兩個(gè)定理經(jīng)常結(jié)合使用.3、三角形面積公式:4、三角形內(nèi)角和定理: 在ABC中,有.5、一個(gè)常用結(jié)論: 在中,若特別注意,在三角函數(shù)中,不成立。第二章:數(shù)列1、數(shù)列中與之間的關(guān)系:注意通項(xiàng)能否合并。2、等差數(shù)列:定義:如果一
20、個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即=d ,(n2,nN),那么這個(gè)數(shù)列就叫做等差數(shù)列。等差中項(xiàng):若三數(shù)成等差數(shù)列通項(xiàng)公式: 或 前項(xiàng)和公式:常用性質(zhì):若,則;下標(biāo)為等差數(shù)列的項(xiàng),仍組成等差數(shù)列;數(shù)列(為常數(shù))仍為等差數(shù)列;若、是等差數(shù)列,則、 (、是非零常數(shù))、,也成等差數(shù)列。單調(diào)性:的公差為,則:)為遞增數(shù)列;)為遞減數(shù)列;)為常數(shù)列;數(shù)列為等差數(shù)列(p,q是常數(shù))若等差數(shù)列的前項(xiàng)和,則、 是等差數(shù)列。3、等比數(shù)列定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。等比中項(xiàng):若三數(shù)成等比數(shù)列(同號(hào))。反之不一定成立。通項(xiàng)公式
21、:前項(xiàng)和公式:常用性質(zhì)若,則;為等比數(shù)列,公比為(下標(biāo)成等差數(shù)列,則對(duì)應(yīng)的項(xiàng)成等比數(shù)列)數(shù)列(為不等于零的常數(shù))仍是公比為的等比數(shù)列;正項(xiàng)等比數(shù)列;則是公差為的等差數(shù)列;若是等比數(shù)列,則 是等比數(shù)列,公比依次是單調(diào)性:為遞增數(shù)列;為遞減數(shù)列;為常數(shù)列;為擺動(dòng)數(shù)列;既是等差數(shù)列又是等比數(shù)列的數(shù)列是常數(shù)列。若等比數(shù)列的前項(xiàng)和,則、 是等比數(shù)列.4、非等差、等比數(shù)列通項(xiàng)公式的求法類型 觀察法:已知數(shù)列前若干項(xiàng),求該數(shù)列的通項(xiàng)時(shí),一般對(duì)所給的項(xiàng)觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個(gè)通項(xiàng)。類型 公式法:若已知數(shù)列的前項(xiàng)和與的關(guān)系,求數(shù)列的通項(xiàng)可用公式 構(gòu)造兩式作差求解。類型 累加法:形如型的遞
22、推數(shù)列(其中是關(guān)于的函數(shù))可構(gòu)造: 類型 累乘法:形如型的遞推數(shù)列(其中是關(guān)于的函數(shù))可構(gòu)造: 類型 構(gòu)造數(shù)列法:形如(其中均為常數(shù)且)型的遞推式: (1)若時(shí),數(shù)列為等差數(shù)列; (2)若時(shí),數(shù)列為等比數(shù)列;類型 倒數(shù)變換法:形如(為常數(shù)且)的遞推式:兩邊同除于,轉(zhuǎn)化為形式,化歸為型求出的表達(dá)式,再求;5、非等差、等比數(shù)列前項(xiàng)和公式的求法錯(cuò)位相減法若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則數(shù)列的求和就要采用此法.將數(shù)列的每一項(xiàng)分別乘以的公比,然后在錯(cuò)位相減,進(jìn)而可得到數(shù)列的前項(xiàng)和.此法是在推導(dǎo)等比數(shù)列的前項(xiàng)和公式時(shí)所用的方法.裂項(xiàng)相消法一般地,當(dāng)數(shù)列的通項(xiàng) 時(shí),往往可將變成兩項(xiàng)的差,采用裂項(xiàng)相消法求
23、和.可用待定系數(shù)法進(jìn)行裂項(xiàng):設(shè),通分整理后與原式相比較,根據(jù)對(duì)應(yīng)項(xiàng)系數(shù)相等得,從而可得常見的拆項(xiàng)公式有: 分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開,可分為幾個(gè)等差、等比或常見的數(shù)列,然后分別求和,再將其合并即可.一般分兩步:找通向項(xiàng)公式由通項(xiàng)公式確定如何分組.倒序相加法如果一個(gè)數(shù)列,與首末兩項(xiàng)等距的兩項(xiàng)之和等于首末兩項(xiàng)之和,則可用把正著寫與倒著寫的兩個(gè)和式相加,就得到了一個(gè)常數(shù)列的和,這種求和方法稱為倒序相加法。特征:記住常見數(shù)列的前項(xiàng)和:第三章:不等式§3.1、不等關(guān)系與不等式1、不等式的基本性質(zhì)(對(duì)稱性)(傳遞性)(可加性)(同向可加性)(異向可
24、減性)(可積性)(同向正數(shù)可乘性)(異向正數(shù)可除性)(平方法則)(開方法則)(倒數(shù)法則)2、幾個(gè)重要不等式,(當(dāng)且僅當(dāng)時(shí)取號(hào)). 變形公式:(基本不等式) ,(當(dāng)且僅當(dāng)時(shí)取到等號(hào)).變形公式: 用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.(當(dāng)僅當(dāng)a=b時(shí)取等號(hào))(當(dāng)僅當(dāng)a=b時(shí)取等號(hào))3、幾個(gè)著名不等式 5、一元二次不等式的解法求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù).二判:判斷對(duì)應(yīng)方程的根.三求:求對(duì)應(yīng)方程的根.四畫:畫出對(duì)應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.6、高次不
25、等式的解法:穿根法.分解因式,把根標(biāo)在數(shù)軸上,從右上方依次往下穿(奇穿偶切),結(jié)合原式不等號(hào)的方向,寫出不等式的解集.7、分式不等式的解法:先移項(xiàng)通分標(biāo)準(zhǔn)化,則 (時(shí)同理)規(guī)律:把分式不等式等價(jià)轉(zhuǎn)化為整式不等式求解.9、指數(shù)不等式的解法:當(dāng)時(shí),當(dāng)時(shí), 規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.10、對(duì)數(shù)不等式的解法當(dāng)時(shí), 當(dāng)時(shí), 規(guī)律:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.11、含絕對(duì)值不等式的解法:定義法:平方法:同解變形法,其同解定理有:規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).12、含有兩個(gè)(或兩個(gè)以上)絕對(duì)值的不等式的解法:規(guī)律:找零點(diǎn)、劃區(qū)間、分段討論去絕對(duì)值、每段中取交集,最后取各段的并集.13、含參數(shù)的不等式的解法解
26、形如且含參數(shù)的不等式時(shí),要對(duì)參數(shù)進(jìn)行分類討論,分類討論的標(biāo)準(zhǔn)有:討論與0的大??;討論與0的大??;討論兩根的大小.14、恒成立問題不等式的解集是全體實(shí)數(shù)(或恒成立)的條件是:當(dāng)時(shí) 當(dāng)時(shí)不等式的解集是全體實(shí)數(shù)(或恒成立)的條件是:當(dāng)時(shí)當(dāng)時(shí)恒成立恒成立恒成立恒成立專題一:常用邏輯用語1、四種命題及其相互關(guān)系四種命題的真假性之間的關(guān)系:、兩個(gè)命題互為逆否命題,它們有相同的真假性;、兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系3、充分條件、必要條件與充要條件若,但 ,則是充分而不必要條件;若 ,但,則是必要而不充分條件;若且,則是的充要條件;若 且 ,則是的既不充分也不必要條件.4、復(fù)合命題復(fù)合命
27、題有三種形式:或();且();非().復(fù)合命題的真假判斷“或”形式復(fù)合命題的真假判斷方法:一真必真;“且”形式復(fù)合命題的真假判斷方法:一假必假;“非”形式復(fù)合命題的真假判斷方法:真假相對(duì).5、全稱量詞與存在量詞全稱量詞與全稱命題 短語“所有的”“任意一個(gè)”在邏輯中通常叫做全稱量詞,并用符號(hào)“”表示.含有全稱量詞的命題,叫做全稱命題.存在量詞與特稱命題短語“存在一個(gè)”“至少有一個(gè)”在邏輯中通常叫做存在量詞,并用符號(hào)“”表示.含有存在量詞的命題,叫做特稱命題.全稱命題與特稱命題的符號(hào)表示及否定全稱命題:,它的否定:全稱命題的否定是特稱命題特稱命題:,它的否定:特稱命題的否定是全稱命題.專題二:圓錐
28、曲線與方程1 橢圓焦點(diǎn)的位置焦點(diǎn)在軸上焦點(diǎn)在軸上圖形標(biāo)準(zhǔn)方程第一定義到兩定點(diǎn)的距離之和等于常數(shù)2,即()范圍且且頂點(diǎn)、軸長長軸的長 短軸的長 對(duì)稱性關(guān)于軸、軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱焦點(diǎn)、焦距離心率 (焦點(diǎn))弦長公式,焦點(diǎn)的位置焦點(diǎn)在軸上焦點(diǎn)在軸上圖形標(biāo)準(zhǔn)方程第一定義到兩定點(diǎn)的距離之差的絕對(duì)值等于常數(shù),即()范圍或,或,頂點(diǎn)、軸長實(shí)軸的長 虛軸的長對(duì)稱性關(guān)于軸、軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱焦點(diǎn)、焦距離心率漸近線方程3 拋物線圖形標(biāo)準(zhǔn)方程對(duì)稱軸軸軸焦點(diǎn)準(zhǔn)線方程專題五:數(shù)系的擴(kuò)充與復(fù)數(shù)1、復(fù)數(shù)的概念虛數(shù)單位;復(fù)數(shù)的代數(shù)形式;復(fù)數(shù)的實(shí)部、虛部,虛數(shù)與純虛數(shù).2、復(fù)數(shù)的分類復(fù)數(shù)3、相關(guān)公式指兩復(fù)數(shù)實(shí)部相同,
29、虛部互為相反數(shù)(互為共軛復(fù)數(shù)).4、復(fù)數(shù)運(yùn)算復(fù)數(shù)加減法:;復(fù)數(shù)的乘法:;復(fù)數(shù)的除法:6、復(fù)數(shù)的幾何意義復(fù)平面:用來表示復(fù)數(shù)的直角坐標(biāo)系,其中軸叫做復(fù)平面的實(shí)軸,軸叫做復(fù)平面的虛軸.專題六:排列組合與二項(xiàng)式定理1、基本計(jì)數(shù)原理 分類加法計(jì)數(shù)原理:(分類相加)做一件事情,完成它有類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法在第類辦法中有種不同的方法.那么完成這件事情共有種不同的方法. 分步乘法計(jì)數(shù)原理:(分步相乘)做一件事情,完成它需要個(gè)步驟,做第一個(gè)步驟有種不同的方法,做第二個(gè)步驟有種不同的方法做第個(gè)步驟有種不同的方法.那么完成這件事情共有種不同的方法.排列數(shù)公式:;,規(guī)定
30、.組合數(shù)公式:或;,規(guī)定.排列與組合的區(qū)別:排列有順序,組合無順序.排列與組合的聯(lián)系:,即排列就是先組合再全排列. 排列與組合的兩個(gè)性質(zhì)性質(zhì)排列;組合.解排列組合問題的方法特殊元素、特殊位置優(yōu)先法(元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素;位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置).間接法(對(duì)有限制條件的問題,先從總體考慮,再把不符合條件的所有情況去掉).相鄰問題捆綁法(把相鄰的若干個(gè)特殊元素“捆綁”為一個(gè)大元素,然后再與其余“普通元素”全排列,最后再“松綁”,將特殊元素在這些位置上全排列).不相鄰(相間)問題插空法(某些元素不能相鄰或某些元素要在某特殊位置時(shí)可
31、采用插空法,即先安排好沒有限制元條件的元素,然后再把有限制條件的元素按要求插入排好的元素之間).有序問題組合法.選取問題先選后排法.至多至少問題間接法.相同元素分組可采用隔板法.分組問題:要注意區(qū)分是平均分組還是非平均分組,平均分成n組問題別忘除以n!.3、二項(xiàng)式定理二項(xiàng)展開公式: .二項(xiàng)展開式的通項(xiàng)公式:.主要用途是求指定的項(xiàng).項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是不同的兩個(gè)概念,但當(dāng)二項(xiàng)式的兩個(gè)項(xiàng)的系數(shù)都為1時(shí),系數(shù)就是二項(xiàng)式系數(shù).如在的展開式中,第項(xiàng)的二項(xiàng)式系數(shù)為,第項(xiàng)的系數(shù)為;而的展開式中的系數(shù)等于二項(xiàng)式系數(shù);二項(xiàng)式系數(shù)一定為正,而項(xiàng)的系數(shù)不一定為正.的展開式:,若令,則有.1、基
32、本概念互斥事件:不可能同時(shí)發(fā)生的兩個(gè)事件.當(dāng)是互斥事件時(shí),那么事件發(fā)生(即中有一個(gè)發(fā)生)的概率,等于事件分別發(fā)生的概率的和,即.對(duì)立事件:其中必有一個(gè)發(fā)生的兩個(gè)互斥事件.事件的對(duì)立事件通常記著.對(duì)立事件的概率和等于1. . 相互獨(dú)立事件:事件(或)是否發(fā)生對(duì)事件(或)發(fā)生的概率沒有影響,(即其中一個(gè)事件是否發(fā)生對(duì)另一個(gè)事件發(fā)生的概率沒有影響).這樣的兩個(gè)事件叫做相互獨(dú)立事件.當(dāng)是相互獨(dú)立事件時(shí),那么事件發(fā)生(即同時(shí)發(fā)生)的概率,等于事件分別發(fā)生的概率的積.即 .若A、B兩事件相互獨(dú)立,則A與、與B、與也都是相互獨(dú)立的.獨(dú)立重復(fù)試驗(yàn)一般地,在相同條件下重復(fù)做的次試驗(yàn)稱為次獨(dú)立重復(fù)試驗(yàn).獨(dú)立重復(fù)試驗(yàn)的概率公式如果在1次試驗(yàn)中某事件發(fā)生的概率是,那么在次獨(dú)立重復(fù)試驗(yàn)中這個(gè)試驗(yàn)恰好發(fā)生次的概率2、離散型隨機(jī)變量 隨機(jī)變量:如果隨機(jī)試驗(yàn)的結(jié)果可以用一個(gè)變量來表示,那么這樣的變量叫做隨機(jī)變量 隨機(jī)變量常
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南陽市文職輔警招聘考試真題
- 臨床病理科住院醫(yī)師:病理技術(shù)考試題庫
- 2025年四川省林業(yè)科學(xué)研究院招聘考試筆試試題(含答案)
- 茶葉連鎖加盟經(jīng)營合同規(guī)范
- 時(shí)尚產(chǎn)業(yè)園區(qū)場(chǎng)地租賃及品牌推廣合同
- 成都小區(qū)物業(yè)服務(wù)企業(yè)招聘與培訓(xùn)合同
- 餐飲業(yè)員工培訓(xùn)與考核勞動(dòng)合同
- 礦山承包權(quán)流轉(zhuǎn)及收益分配合同
- 餐飲企業(yè)特色調(diào)料配方保密合同
- 安全生產(chǎn)法內(nèi)容解讀
- eXTP能譜聚焦陣列X射線探測(cè)器與讀出電子學(xué):原理、技術(shù)及應(yīng)用探索
- 安全意識(shí)四不傷害培訓(xùn)課件
- 創(chuàng)新型企業(yè)股權(quán)激勵(lì)與薪酬績效融合制度設(shè)計(jì)
- 磚砌圍墻施工合同協(xié)議
- 應(yīng)聘美團(tuán)個(gè)人簡歷填
- 2025年廣東高中學(xué)業(yè)水平合格性考試化學(xué)試卷試題(含答案解析)
- 2024年山西華陽新材料科技集團(tuán)有限公司招聘筆試真題
- 交通安全設(shè)施施工安全風(fēng)險(xiǎn)辨識(shí)與防控表
- 房屋建筑工程竣工驗(yàn)收技術(shù)資料統(tǒng)一用表(2024 版)
- 數(shù)學(xué)競賽輔導(dǎo):《高中數(shù)學(xué)競賽輔導(dǎo)班》教案
- 眼視光醫(yī)學(xué)病例解析與現(xiàn)代治療技術(shù)
評(píng)論
0/150
提交評(píng)論