




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 統(tǒng)計(jì)復(fù)習(xí)題目一.某公司管理人員為了解某化妝品在一個(gè)城市的月銷(xiāo)售量Y(單位:箱)與該城市中適合使用該化妝品的人數(shù)(單位:千人)以及他們 人均月收入(單位:元)之間的關(guān)系,在某個(gè)月中對(duì)15個(gè)城市做調(diào)查,得上述各量的觀(guān)測(cè)值如表A1所示.假設(shè)Y與,之間滿(mǎn)足線(xiàn)性回歸關(guān)系 其中獨(dú)立同分布于.(1)求回歸系數(shù)的最小二乘估計(jì)值和誤差方差的估計(jì)值,寫(xiě)出回歸方程并對(duì)回歸系數(shù)作解釋?zhuān)籥nalyze-regression-linear,y to dependent,x1 x2 to indepents ,statistics-confidence intervals,save-unstandardized. Pre
2、diction individual-individual.ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Interval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant)3.4532.4311.420.181-1.8438.749x1.496.006.93481.924.000.483.509x2.009.001.1089.502.000.007.011a. Dependent Variable:
3、 yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014a. Predictors: (Constant), x2, x1b. Dependent Variable: y回歸系數(shù)的最小二乘估計(jì)值和誤差方差的估計(jì)值分別為:3.453,0.496,0.009和=4.740. 回歸方程為y=0.496*x1+0.009*x2+3.453 回歸系數(shù)解釋?zhuān)?.453可理解為化妝品的月基本銷(xiāo)售量,當(dāng)人均月收入固定時(shí),
4、適合使用該化妝品的人數(shù)每提高一個(gè)單位,月銷(xiāo)售量Y將增加0.496個(gè)單位;當(dāng)適合使用該化妝品的人數(shù)固定時(shí),人均月收入每提高一個(gè)單位,月銷(xiāo)售量 Y將增加0.009個(gè)單位(2)求出方差分析表,解釋對(duì)線(xiàn)性回歸關(guān)系顯著性檢驗(yàn)的結(jié)果.求復(fù)相關(guān)系數(shù)的平方的值并解釋其意義;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014a. Predictors: (Constant), x2, x1b. Dependent Var
5、iable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.999a.999.9992.17722a. Predictors: (Constant), x2, x1由于P值=0.000<0.05,所以回歸關(guān)系顯著.值=0.999,說(shuō)明Y與,之間的線(xiàn)性回歸關(guān)系是高度顯著的(3)分別求和的置信度為的置信區(qū)間;coefficients的后面部分.和的置信度為的置信區(qū)間分別為(0.483,0.509),(0.007,0.011)(4)對(duì),分別檢驗(yàn)人數(shù)及收入對(duì)銷(xiāo)量Y的影響是否顯著;由于系數(shù),對(duì)應(yīng)的檢
6、驗(yàn)P值分別為0.000,0.000都小于0.05,所以適合使用該化妝品的人數(shù)和人均月收入 對(duì)月銷(xiāo)售量Y的影響是顯著的(5)該公司欲在一個(gè)適宜使用該化妝品的人數(shù),人均月收入的新城市中銷(xiāo)售該化妝品,求其銷(xiāo)量的預(yù)測(cè)值及置信為0.95的置信區(qū)間.Y的預(yù)測(cè)值及置信度為0.95的置信區(qū)間分別為:135.5741和(130.59977,140.54305)在數(shù)據(jù)表中直接可以看見(jiàn)二、某班42名男女學(xué)生全部參加大學(xué)英語(yǔ)四級(jí)水平考試,數(shù)據(jù)如下:(數(shù)據(jù)表為A2)不合格1合格2男生1262女生286問(wèn)男女生在英語(yǔ)學(xué)習(xí)水平上有無(wú)顯著差異?單擊weight cases-weight cases by-x, ok, ana
7、lyze-descriptive statistics-crosstabs,(列聯(lián)表分析)sex to rows,score to column, exact-exact, statistics chi-square ,ok.Chi-Square TestsValuedfAsymp. Sig. (2-sided)Exact Sig. (2-sided)Exact Sig. (1-sided)Point ProbabilityPearson Chi-Square7.721a1.005.010.010Continuity Correctionb5.5781.018Likelihood Ratio7
8、.3691.007.037.010Fisher's Exact Test.010.010Linear-by-Linear Association7.537c1.006.010.010.010N of Valid Cases42a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.67.b. Computed only for a 2x2 tablec. The standardized statistic is 2.745.原假設(shè)不顯著,看這個(gè)(Asymp. Sig. (2
9、-sided))。Pearson Chi-Square(卡方檢驗(yàn)) and Likelihood Ratio(似然比) all <0.05 男女生在英語(yǔ)學(xué)習(xí)水平上差異是顯著的三、將一塊耕地等分為24個(gè)小區(qū),今有3種不同的小麥品種(d)和2種不同的肥料(B1,B2),現(xiàn)將各小麥品種與各種肥料進(jìn)行搭配,對(duì)每種搭配都在4個(gè)小區(qū)上試驗(yàn),測(cè)得每個(gè)小區(qū)產(chǎn)量的數(shù)據(jù)如表A3所示.(1)假設(shè)所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A與B的交互效應(yīng)在下是否顯著?3.0Analyze-general linear model-univariate,x to dependent variable,a and
10、b to fixed factor, ok Tests of Between-Subjects EffectsDependent Variable:xSourceType III Sum of SquaresdfMean SquareFSig.Corrected Model263.333a552.66721.545.0003650.66713650.6671.493E3.000a190.333295.16738.932.000b54.000154.00022.091.000a * b19.00029.5003.886.040Error44.000182.444Total3958.00024Co
11、rrected Total307.33323a. R Squared = .857 (Adjusted R Squared = .817)由于交互效應(yīng)檢驗(yàn)P值=0.04<0.05,所以小麥(A)與肥料(B)之間的交互效應(yīng)是顯著的.(2)若A與B的交互效應(yīng)顯著,分別就B的各水平,給出在A的各水平上的均值的置信度為0.95 的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間.3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a
12、 to post hoc tests for, bonferroni,options-a to display means for.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound19.000.6877.44510.555210.000.6878.44511.555313.500.68711.94515.055Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Conf
13、idence IntervalLower BoundUpper Bound12-1.00.972.991-3.851.853-4.50*.972.004-7.35-1.65211.00.972.991-1.853.853-3.50*.972.017-6.35-.65314.50*.972.0041.657.3523.50*.972.017.656.35Based on observed means. The error term is Mean Square(Error) = 1.889.*. The mean difference is significant at the .05 leve
14、l.固定肥料的水平,的置信度為0.95的置信區(qū)間分別為(7.445,10.555),(8.445,11.555),(11.945,15.055);的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間分別為(-3.85,1.85),(-7.35,-1.65),(-6.35,-0.65)2. Analyze-general linear model-univariate, x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for,bonferroni,options-a to display means
15、 for,.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound110.500.8668.54112.459212.000.86610.04113.959319.000.86617.04120.959Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-1.501.225.755-5.09
16、2.093-8.50*1.225.000-12.09-4.91211.501.225.755-2.095.093-7.00*1.225.001-10.59-3.41318.50*1.225.0004.9112.0927.00*1.225.0013.4110.59Based on observed means. The error term is Mean Square(Error) = 3.000.*. The mean difference is significant at the .05 level.固定肥料的水平,的置信度為0.95的置信區(qū)間分別(8.541,12.459),(10.0
17、41,13.959),(17.041,20.959)的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間分別為(-5.09,2.09),(-12.09,-4.91),(-10.59,-3.41)四、數(shù)據(jù)表A4給出了我國(guó)31個(gè)省市自治區(qū)的的經(jīng)濟(jì)發(fā)展?fàn)顩r,所考察的八個(gè)指標(biāo)為:地區(qū)生產(chǎn)總值;:居民消費(fèi)水平;:基本建設(shè)投資;職工平均工資; :居民消費(fèi)價(jià)格指數(shù);:商品零售價(jià)格指數(shù);:貨物周轉(zhuǎn)量;:工業(yè)總產(chǎn)值。(1)從樣本相關(guān)系數(shù)矩陣出發(fā)做主成分分析,求各主成分的貢獻(xiàn)率及前三個(gè)主成分的累計(jì)貢獻(xiàn)率;求出前三個(gè)主成分的表達(dá)式。Analyze-data-reduction-factor將八個(gè)成分全部選入va
18、riables,extraction-extract-number of factors-8,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %13.74146.76146.7613.74146.76146.76122.39429.92676.6872.39429.92676.6873.7389.23185.918.7389.23185.9184.4
19、806.00691.9235.4375.46697.3896.1421.77699.1657.060.74599.9108.007.090100.000Extraction Method: Principal Component Analysis.Component MatrixaComponent12345678地區(qū)生產(chǎn)總值.814.556-.116.031-.035-.028-.094-.061居民消費(fèi)水平.766-.493.195-.076.212-.285.005.006基本建設(shè)投資.785.558-.141.085-.083-.013.196.003職工平均工資.604-.572.0
20、16.465.264.149-.002-.002居民消費(fèi)價(jià)格指數(shù)-.314.599.666.298-.091-.051-.007.001商品零售價(jià)格指數(shù)-.397.721-.006-.131.552.029.013.000貨物周轉(zhuǎn)量.761-.181.458-.380-.005.185.017-.004工業(yè)總產(chǎn)值.823.540-.116.020-.042.019-.109.058Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or direa.
21、8 components extracted.各主成分的貢獻(xiàn)率分別為46.761%,29.926%,9.231%,6.006%,5.466%,1.776%,0.745%,0.09%.前三個(gè)主成分的累計(jì)貢獻(xiàn)率為85.918%.y1=0.814x1+0.766x2+0.785x3+0.604x4-0.314x5-0.397x6+0.761x7+0.823x8y2=0.556x1-0.493x2+0.558x3-0.572x4+0.599x5+0.721x6-0.181x7+0.540x8(2)本相關(guān)系數(shù)矩陣出發(fā)做因子分析,提取三個(gè)公共因子F1,F(xiàn)2,F(xiàn)3,說(shuō)明每個(gè)公共因子各由哪些指標(biāo)解釋?zhuān)⒔忉屆?/p>
22、個(gè)公共因子的具體意義。1.求出三個(gè)公共因子F1,F(xiàn)2,F(xiàn)3的表達(dá)式。Analyze-data-reduction-factor將八個(gè)成分全部選入variables,extraction-extract-number of factors-3,descriptives-correlation matrix- coefficients, rotation-method- varimax, scores-save as variables,display factor score coefficient matrix, okComponent Score Coefficient MatrixComp
23、onent123地區(qū)生產(chǎn)總值.341-.075-.062居民消費(fèi)水平-.031.380.092基本建設(shè)投資.343-.097-.089職工平均工資-.036.258-.125居民消費(fèi)價(jià)格指數(shù)-.085.220.910商品零售價(jià)格指數(shù).114-.254.157貨物周轉(zhuǎn)量-.021.468.460工業(yè)總產(chǎn)值.339-.069-.065Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or dire Undefined error #11408 - Can
24、not open text file "F:SPSSspsslangenspss.err": No such file or direF1=0.341x1-0.031x2+0.343x3-0.036x4-0.085x5+0.114x6-0.021x7+0.339x82.根據(jù)三個(gè)公共因子F1,F(xiàn)2,F(xiàn)3的得分,對(duì)31個(gè)省市自治區(qū)進(jìn)行分層聚類(lèi)分析,要求樣本間用歐氏平方距離,類(lèi)間用類(lèi)內(nèi)平均連接法,如果聚為4類(lèi),寫(xiě)出每一類(lèi)成員。Analyze-classify-hierarchical cluster,F1.F2.F3 to variables,地區(qū) to label cases
25、by, statistics-cluster member ship-single solution-number of cluster-4. method-cluster method-median clustering,save- cluster member ship-single solution-number of cluster-4.ok 分類(lèi)在表的最后一列可以讀出。五、表B1給出了煤凈化過(guò)程的一組數(shù)據(jù),Y為凈化后煤溶液中所含雜質(zhì)的重量,這是衡量?jī)艋实闹笜?biāo),X1表示輸入凈化過(guò)程的溶液所含的煤與雜質(zhì)的比,X2是溶液的PH值,X3是溶液的流量。假設(shè)Y與,和之間滿(mǎn)足線(xiàn)性回歸關(guān)系 其中
26、獨(dú)立同分布于.(1) 求回歸系數(shù)的最小二乘估計(jì)值和誤差方差的估計(jì)值,寫(xiě)出回歸方程并對(duì)回歸系數(shù)作解釋?zhuān)籥nalyze-regression-linear,y to dependent,x1 x2 x3to independent ,statistics-confidence intervals, save-unstandardized. Prediction individual-individual .ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Inte
27、rval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant)397.08762.7576.327.000252.370541.805x1-110.75014.762-.841-7.502.000-144.792-76.708x215.5834.921.3553.167.0134.23626.931x3-.058.026-.255-2.274.053-.117.001a. Dependent Variable: yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression31156.0243
28、10385.34123.827.000aResidual3486.8928435.862Total34642.91711a. Predictors: (Constant), x3, x2, x1b. Dependent Variable: y回歸系數(shù)的最小二乘估計(jì)值和誤差方差的估計(jì)值分別為:397.087,-110.75,15.583,-0.058和435.862y=-110.750*x1+15.583*x2-0.058*x3+397.087回歸系數(shù)解釋?zhuān)?97.087可理解為雜質(zhì)的基本重量,當(dāng)PH值和溶液流量固定時(shí),輸入凈化過(guò)程的溶液所含的煤與雜質(zhì)的比 每提高一個(gè)單位,雜質(zhì)的重量 Y將減少1
29、10.75個(gè)單位;當(dāng)輸入凈化過(guò)程的溶液所含的煤與雜質(zhì)的比和溶液流量固定時(shí),PH值每提高一個(gè)單位,雜質(zhì)的重量Y將增加15.583個(gè)單位;當(dāng)輸入凈化過(guò)程的溶液所含的煤與雜質(zhì)的比和PH值固定時(shí),溶液流量每提高一個(gè)單位,雜質(zhì)的重量Y將減少0.058個(gè)單位。(2)求出方差分析表,解釋對(duì)線(xiàn)性回歸關(guān)系顯著性檢驗(yàn)的結(jié)果.求復(fù)相關(guān)系數(shù)的平方的值并解釋其意義;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression31156.024310385.34123.827.000aResidual3486.8928435.862Total34642.91711a. Pr
30、edictors: (Constant), x3, x2, x1b. Dependent Variable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.948a.899.86220.87730a. Predictors: (Constant), x3, x2, x1由于P值=0.000<0.05,所以回歸關(guān)系顯著.值=0.899,說(shuō)明Y與,之間的線(xiàn)性回歸關(guān)系是顯著的(3)分別求,和的置信度為的置信區(qū)間;coefficients的后面部分,和的置信度為的置信區(qū)間分別為(-144.792,
31、-76.708),(4.236,26.931),(-0.117,0.001)(4)對(duì),分別檢驗(yàn), 和對(duì)Y的影響是否顯著;由于系數(shù),對(duì)應(yīng)的檢驗(yàn)P值分別為0.000,0.013都小于0.05,所以和 對(duì)Y的影響是顯著的.而對(duì)應(yīng)的檢驗(yàn)P值為0.053大于0.05,所以對(duì)Y的影響是不顯著的。(5)若有,的值,求Y的預(yù)測(cè)值及置信度為0.95的置信區(qū)間.Y的預(yù)測(cè)值及置信度為0.95的置信區(qū)間分別為:218.64484和(166.93687,270.35282)在數(shù)據(jù)表中直接可以看見(jiàn)六、考察四種不同催化劑對(duì)某一化工產(chǎn)品得率的影響,在四種不同催化劑下分別做了6次實(shí)驗(yàn),得數(shù)據(jù)如表B2所示.假定各種催化劑下產(chǎn)品的
32、得率服從同方差的正態(tài)分布,試在下,檢驗(yàn)四種不同催化劑對(duì)該化工產(chǎn)品的得率有無(wú)顯著影響.要寫(xiě)出方差分析表。方差分析表:Analyzecompare means -one-way anova,x to dependent list,a to factor ,okANOVAxSum of SquaresdfMean SquareFSig.Between Groups.0063.0021.306.300Within Groups.03020.001Total.03623由于檢驗(yàn)P值=0.300>0.05,所以認(rèn)為四種不同催化劑對(duì)該化工產(chǎn)品的得率在水平0.05下無(wú)顯著差異。 七、為了研制一種治療枯草
33、熱病的藥物,將兩種成分(A和B)各按三種不同劑量(低、中、高)混合,將36位自愿受試患者隨機(jī)分為9組,每組4人服用各種劑量混合下的藥物,記錄其病情緩解的時(shí)間(單位:小時(shí))數(shù)據(jù)如表B3所示.(1)假設(shè)所給數(shù)據(jù)服從方差分析模型,建立方差分析表,A與B的交互效應(yīng)在下是否顯著?B3.0.Analyze-general linear model-univariate,x to dependent variable,a and b to fixed factor, okTests of Between-Subjects EffectsDependent Variable:xSourceType III S
34、um of SquaresdfMean SquareFSig.Corrected Model373.105a846.638774.910.0001857.61011857.6103.086E4.000a220.0202110.0101.828E3.000b123.660261.8301.027E3.000a * b29.42547.356122.227.000Error1.62527.060Total2232.34036Corrected Total374.73035a. R Squared = .996 (Adjusted R Squared = .994)交互效應(yīng)檢驗(yàn)P值=0.000<
35、;0.05,所以成分 (A)與成分(B)之間的交互效應(yīng)是顯著的(2)若A與B 的交互效應(yīng)顯著,分別就A的各水平,給出在B的各水平上的均值的置信度為0.95 的置信區(qū)間以及兩兩之差的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間.B3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variab
36、le:xbMeanStd. Error95% Confidence IntervalLower BoundUpper Bound12.475.1102.2262.72424.600.1104.3514.84934.575.1104.3264.824Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-2.1250*.15546.000-2.5810-1.66903-2.1000*.15546.000-2
37、.5560-1.6440212.1250*.15546.0001.66902.58103.0250.155461.000-.4310.4810312.1000*.15546.0001.64402.55602-.0250.155461.000-.4810.4310Based on observed means. The error term is Mean Square(Error) = .048.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(2.226,2.724),(4.
38、351,4.849),(4.326,4.824);的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間分別為(-2.581,-1.669),(-2.556,-1.644),(-0.431,0.481)B3.2.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Er
39、ror95% Confidence IntervalLower BoundUpper Bound15.450.1275.1625.73828.925.1278.6379.21339.125.1278.8379.413Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-3.4750*.18028.000-4.0038-2.94623-3.6750*.18028.000-4.2038-3.1462213.
40、4750*.18028.0002.94624.00383-.2000.18028.888-.7288.3288313.6750*.18028.0003.14624.20382.2000.18028.888-.3288.7288Based on observed means. The error term is Mean Square(Error) = .065.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(5.162,5.738),(8.637,9.213),(8.837,
41、9.413);的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間分別為(-4.0038,-2.9462),(-4.2038,-3.1462),(-0.7288,0.3288)B3.3.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Error95% Confi
42、dence IntervalLower BoundUpper Bound15.975.1305.6826.268210.275.1309.98210.568313.250.13012.95713.543Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-4.3000*.18333.000-4.8378-3.76223-7.2750*.18333.000-7.8128-6.7372214.3000*.1
43、8333.0003.76224.83783-2.9750*.18333.000-3.5128-2.4372317.2750*.18333.0006.73727.812822.9750*.18333.0002.43723.5128Based on observed means. The error term is Mean Square(Error) = .067.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度為0.95的置信區(qū)間分別為(5.682,6.268),(9.982,10.568),(12.9
44、57,13.543);的置信度不小于0.95的Bonferroni同時(shí)置信區(qū)間分別為(-4.8378,-3.7622),(-7.8128,-6.7372),(-3.5128,-2.4372). 八、表B4給出了1991年我國(guó)30個(gè)省、區(qū)、市城鎮(zhèn)居民的月平均消費(fèi)數(shù)據(jù),所考察的八個(gè)指標(biāo)如下(單位均為元/人):人均糧食支出;:人均副食支出;:人均煙酒茶支出;人均其他副食支出; :人均衣著商品支出;:人均日用品支出;:人均燃料支出;:人均非商品支出(1)從出發(fā)做主成分分析,求各主成分的貢獻(xiàn)率及前兩個(gè)主成分的累計(jì)貢獻(xiàn)率; Analyze-data-reduction-factor將八個(gè)成分全部選入var
45、iables,extraction-extract-number of factors-2,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %13.09638.70438.7043.09638.70438.70422.36729.59068.2942.36729.59068.2943.92011.50079.7944.7068.82488.6185.
46、4986.23194.8486.2302.87497.7227.1311.63599.3578.051.643100.000Extraction Method: Principal Component Analysis.第一,第二,第八主成分的貢獻(xiàn)率分別為:38.704%,29.59%,11.5%,8.824%,6.231%,2.874%,1.635%,0.635%. 前兩個(gè)主成分的累計(jì)貢獻(xiàn)率68.294%.(2)求出前兩個(gè)主成分并解釋其意義.Component MatrixaComponent12x1.439-.371x2.914-.058x3-.033.731x4.447.828x5.038.885x6.867.207x7.558-.401x8.896-.134Undefined error #11401 - Cannot open text file "C:Program Files
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路接觸網(wǎng)設(shè)備機(jī)械強(qiáng)度檢測(cè)考核試卷
- 資產(chǎn)評(píng)估考核試卷
- 稀土金屬在航空領(lǐng)域的應(yīng)用考核試卷
- 崗位能手競(jìng)聘匯報(bào)
- 急救車(chē)知識(shí)培訓(xùn)
- 新生兒NICU述職報(bào)告
- 廣東省深圳市2024-2025學(xué)年高一下學(xué)期期中考試 數(shù)學(xué) PDF版含解析【KS5U 高考】
- 心臟搭橋麻醉臨床實(shí)踐要點(diǎn)
- 麻醉科工作量分析與優(yōu)化策略
- 房地產(chǎn)區(qū)域分化現(xiàn)象解析:2025年投資策略與市場(chǎng)布局優(yōu)化
- 2024年浙江寧波慈溪市民政局及所屬事業(yè)單位招聘編外用工6人歷年(高頻重點(diǎn)提升專(zhuān)題訓(xùn)練)共500題附帶答案詳解
- 第16課 經(jīng)濟(jì)危機(jī)與資本主義國(guó)家的應(yīng)對(duì)(課件)-【中職專(zhuān)用】《世界歷史》(同課異構(gòu))(高教版2023基礎(chǔ)模塊)
- 新編制工具用戶(hù)手冊(cè)
- DL-T5002-2021地區(qū)電網(wǎng)調(diào)度自動(dòng)化設(shè)計(jì)規(guī)程
- 2024年個(gè)人信用報(bào)告(個(gè)人簡(jiǎn)版)樣本(帶水印-可編輯)
- 走近攝影智慧樹(shù)知到期末考試答案2024年
- 電力設(shè)計(jì)創(chuàng)新創(chuàng)業(yè)項(xiàng)目計(jì)劃書(shū)
- 浙江省杭州市上城區(qū)2022-2023學(xué)年六年級(jí)下學(xué)期期末語(yǔ)文試題
- 寧德時(shí)代2024年社招測(cè)評(píng)題庫(kù)
- 大學(xué)生就業(yè)指導(dǎo)智慧樹(shù)知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論