余弦定理及其應用_第1頁
余弦定理及其應用_第2頁
余弦定理及其應用_第3頁
余弦定理及其應用_第4頁
余弦定理及其應用_第5頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、余弦定理及其應用【教學目標】【知識與技能目標】(1)了解并掌握余弦定理及其推導過程(2)會利用余弦定理來求解簡單的斜三角形中有關(guān)邊、角方面的問題(3)能利用計算器進行簡單的計算(反三角)【過程與能力目標】(1)用向量的方法證明余弦定理,不僅可以體現(xiàn)向量的工具性,更能加深對向量知識應用的認識(2)通過引導、啟發(fā)、誘導學生發(fā)現(xiàn)并且順利推導出余弦定理的過程,培養(yǎng)學生觀察與分析、歸納與猜想、抽象與概括等邏輯思維能力【情感與態(tài)度目標】通過三角函數(shù)、余弦定理、向量數(shù)量積等知識間的聯(lián)系,來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一【教學重點】余弦定理的證明及應用【教學難點】(1)用向量知識證明余弦定理時的思路分析與探

2、索(2)余弦定理在解三角形時的應用思路【教學過程】一、引入問:在RtABC中,若C=,三邊之間滿足什么關(guān)系?答:問:若C,三邊之間是否還滿足上述關(guān)系?答:應該不會有了!問:何以見得?答:假如不變,將A、B往里壓縮,則C,且;同理,假如不變,將A、B往外拉伸,則C,且?guī)煟悍浅U_!那么,這樣的變化有沒有什么規(guī)律呢?答:規(guī)律肯定會有,否則,您就不會拿它來說事了問:仔細觀察,然后想想,到底會有什么規(guī)律呢?答:有點象向量的加法或減法,或【探求】設ABC的三邊長分別為,由于問:仔細觀察這個式子,你能否找出它的內(nèi)在特點?答:能!式子中有三邊一角,具體包括如下三個方面:第一、左邊是什么邊,右邊就是什么角;第

3、二、左邊有什么邊,右邊就沒有什么邊;第三、邊是平方和,乘積那里是“減號”師:很好!那么,你能否仿照這個形式寫出類似的另外兩個?答:可以!它們是:和【總結(jié)】這就是我們今天要講的余弦定理,現(xiàn)在,讓我們來繼續(xù)研究它的結(jié)構(gòu)特點以及其應用問題板書課題 余弦定理及其應用二、新課(一)余弦定理的文字表述:三角形的任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的兩倍.(二)余弦定理的另一種表述形式:;(三)歸納1. 熟悉定理的結(jié)構(gòu),注意“平方”“夾角”“余弦”等;2. 每個式子中都有四個量,知道其中的三個就可以求另外的一個;3. 當夾角為(即三角形為直角三角形)時即為勾股定理 (特例)(四)

4、余弦定理的適用范圍1. 已知三邊求角;2. 已知兩邊及其夾角求第三邊三、應用例1在ABC中,已知,求這個三角形的最大內(nèi)角【分析】根據(jù)大邊對大角的原則,知:A為最大解:,A=,即該三角形的最大內(nèi)角等于練習1已知ABC的三邊長分別是,求三角形的最大內(nèi)角答案:思考:提示:求出與最大邊相對應的角的余弦值,再與0進行比較,判定標準如下:若0,則為銳角三角形;若=0,則為直角三角形;若0,則為鈍角三角形例2在ABC中,求及A【分析】已知兩邊夾角,可以用公式直接求出;然后用公式即可求出角A解:由得: 解得;又,A=例3已知ABC中,解此三角形【分析】知道邊的比值,可以設其公約數(shù)為k,因為,在后面的運算中又可以同時約分將其約掉,原則上一般先求最小的角;當然,也可以先求最大的角解法一:設其三邊的公約數(shù)為k,則,由得;由得,B=; 因此C=解法二:設其三邊的公約數(shù)為k,則,由得即,(此時可用計算器的第二功能求的反余弦) C=;由得,B=;A=例4已知ABC中,【分析】這種題型一般都要歸結(jié)為解方程組解:由得,即,由,分類討論如下:當時,由得:當時,由得:即或練習2在ABC中,求提示:,練習3在棱長為1的正方體中,M、N分別為與的中點,那么直線AM與CN所成角的余弦值是(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論