實數(shù)復習課教案_第1頁
實數(shù)復習課教案_第2頁
實數(shù)復習課教案_第3頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、實數(shù)復習課教案教學目標1 理解平方根、算術平方根、立方根的概念,能用平方或立方運算求某些數(shù)的平方 根或立方根;2 會用計算器進行數(shù)的加、減、乘、除、乘方及開方運算;3 了解無理數(shù)的意義,會對實數(shù)進行分類,了解實數(shù)的相反數(shù)和絕對值的意義;4 了解實數(shù)與數(shù)軸上的點一一對應,了解有理數(shù)的運算律適用于實數(shù)范圍會按結 果所要求的精確度用近似的有限小數(shù)代替無理數(shù)進行實數(shù)的四那么運算教學重難點1 平方根和算術平方根的概念、性質(zhì),無理數(shù)與實數(shù)的意義;2 算術平方根的意義及實數(shù)的性質(zhì)教學準備課件、計算器教學過程一、知識疏理 , 形成體系。課前要求學生對本章知識進行總結 師:本章的主要內(nèi)容是開方運算從定義出發(fā)解題

2、是解本章有關題目的根本方法,我 們注意掌握用計算器進行數(shù)的計算的方法的同時, 還必須注意區(qū)分清楚有理數(shù)與無理數(shù)的 概念,掌握實數(shù)的四那么運算下面,我們以組為單位小結一下本章的知識點生:我們認為這一章主要學習了一種新的運算開方,開方與乘方是互為逆運算的 關系開方包括開平方與開立方通過開平方可求一個非負實數(shù)的平方根;通過開立方可求 一個實數(shù)的立方根依據(jù)這一思路,我們畫出的知識結構圖是:乘方互為逆運算 開方 開平方 開方 開立方 平方根 算術平方根立方根師:好 ! 他們組是以運算為線索總結的,側重總結了開方運算,還有補充嗎? 生:我們認為平方根、算術平方根、立方根的定義、性質(zhì)也都非常重要因此我們是這

3、樣總結的:定義一個正數(shù)有兩個平方平方根開平方根,們互為相反數(shù) 0的平方根是0; 負數(shù)沒有平方根乘方互為逆運算開方定義算術平方根“豐 正數(shù)a的正的平方根性質(zhì)0的算術平方根是0定義正數(shù)有一個正的立開立方立方根方根;性質(zhì) 負數(shù)有一個負的立方根;0的立方根是0.師:當求一個非負數(shù)的平方根時,可能會出現(xiàn)無理數(shù),使得數(shù)的范圍從有理數(shù)擴大到 實數(shù),所以實數(shù)的意義、分類以及相關的內(nèi)容也需總結.生:我們是這樣總結的:1 .分類正有理數(shù)有理數(shù)0實數(shù)負有理數(shù)無理數(shù)正無理數(shù)負無理數(shù)2 .每一個實數(shù)都可以用數(shù)軸上的一個點來表示,反之,數(shù)軸上的每一個點又都可以 表示成一個實數(shù),它們之間是一一對應的.師:有理數(shù)都可以表示成

4、有限小數(shù)或無限循環(huán)小數(shù)無理數(shù)是無限不循環(huán)小數(shù),它不 能表示成分數(shù)形式,任何一個無理數(shù),都可以用給定精確度的有理數(shù)來近似地表示.二、強化根底,穩(wěn)固拓展.也可以由學生提出典型薄弱題型進行講解1 求以下各數(shù)的平方根:127 ;2、25 ;師:此題要審清是求哪個實數(shù)的平方根,只有非負實數(shù)才有平方根.生:1是求25的平方根;92是求5的平方根;3是求A的平方根.25由學生獨立完成.2. x取何值時,以下各式有意義.1. 2 x ;2x21 '師:a在什么情況下有意義?生:對于.a,必須滿足a> 0,它才有意義,所以被開方數(shù)必須是非負數(shù).12- x> 0;2x2+ 1> 0.師:

5、如何求出x的范圍呢?生:我們討論后,得出如下結論:1x< 2;2不管x取什么實數(shù),x2> 0, x2 + 1 > 0,即x的取值范圍是:x為全體實數(shù).3 .求以下各數(shù)的值:門.32 ;2.X2 2x 1(x> 1).師:如何化簡、a2呢?生:我們認為首先應考慮 .a2中a的范圍.1當 a>0 時,o2 = a;2丨當av0時,、;孑 =-a.師:求以下各數(shù)的值,必須先確定a的范圍.生:因為 3nV 0,所以.32 = (3 n ) = n 3.師:如何化簡、x2 2x 1呢?生:將,x2 2x 1化為,2的形式,即 X2 2x 1 x 1 2再考慮x- 1的范圍,

6、由學生獨立完成.4 .:| X 2| + y 3 = 0,求:x + y 的值.師:認真審題,考慮一下所給的這些數(shù)有什么特點. 生:|X 2|和一3都是非負數(shù).師:兩個非負數(shù)的和可能是 0嗎?生:只有當兩個非負數(shù)都取 0時,其和才為0,其他情況下,都大于 0.由學生獨立完成.師:哪些數(shù)為非負數(shù)呢?生:實數(shù)a的絕對值,表示為|a| , |a|是非負數(shù);實數(shù) a的平方,表示為a2, a2是非 負數(shù);非負實數(shù)a的算術平方根表示為a, .a是非負數(shù).師:非負數(shù)有什么特點?生:1幾個非負數(shù)的和仍為非負數(shù);2假設幾個非負數(shù)的和為 0,那么每一個非負數(shù)都必須為 0.師:絕對值、平方數(shù)、算術平方根都是非負數(shù),

7、解題時要注意這一隱含條件,不可把0漏掉.5 .計算:.52 3精確到.7師:無理數(shù)是開方開不盡的數(shù),那么如何計算呢?生:在實數(shù)運算中,當遇到無理數(shù)并且需要求出結果的近似值時,可以按照所要求的 精確度用相應的近似有限小數(shù)去代替無理數(shù),再進行計算.因為精確到,所以在計算過程中可用代替、.5,代替.3 .由學生獨立完成.6 .在實數(shù) 血、031、一、-、中,無理數(shù)的個數(shù)為 個.3 7師:如何判斷一個數(shù)是無理數(shù)?生:一個無理數(shù)不能表示成分數(shù)形式,或者說成數(shù)位無限,且不循環(huán).7. |x| v 2n, x為整數(shù),求x師:|X| = 2 n, x的值是多少?生:當 X= 2 n, X = 2 n 時,|x|

8、 = 2 n,所以 |x| V 2 n時,x =± 2 n.師:|X| = 2 n的含義?生:實數(shù)x在數(shù)軸上所對應點到原點的距離等于2n.師:|X| V 2 n的含義呢?生:實數(shù)X在數(shù)軸上所對應點到原點的距離小于2n.師:結合數(shù)軸,你能說出滿足 |X| V2 n這一條件的點在數(shù)軸的什么位置上嗎? 生:1 1H0在如下列圖的范圍內(nèi),因為 X為整數(shù),所以 x= 6、5、4、3、2、1、0、一 1、一 2、一 3、一 4、一 5、一 6. 師:非常好!三、查缺補漏,歸納提升.1 .通過今天的探究學習,你們有哪些收獲?2. 非負數(shù)的和等于零的條件是:當且僅當每個非負數(shù)的值都等于零.此性質(zhì)在解

9、題 時經(jīng)常會被用到.3. 對于本章的內(nèi)容你還有那些疑問?四、作業(yè)1. 教科書第125頁復習題72 .自編練習冊第七章綜合測試題。五、板書設計第七章實數(shù)。歸納提升1 .知識疏理2。穩(wěn)固訓練3六、教學反思略七、課堂小卷一、填一填:I. 16的平方根記作 ,等于.2. J16的值為.3_i+3rv=.2卓的倒數(shù)是.55. 兩個無理數(shù)的和為有理數(shù),這兩個無理數(shù)可以是 和6. 彳假設 |x2-25 | + jy 3 =0,貝H x=,y=.7. x的平方根是土 8,那么x的立方根是 .二、選一選:8.4的平方根是()A.2B.-2 C.± 2 D. ±29. 以下各式中,無意義的是()、3 B. 、 3 C. ,( 3)2D. To710. 以下各組數(shù)中,互為相反數(shù)的一組是()(2)2 3 飛丄 D. I -2 | 與 22II. 以下說法正確的選項是 ()三、做一做12.求以下各數(shù)的平方根:(1)81; (2)16 ;(4)2 丄;81.2542313. 求以下各式中的 x:x=1.21;27(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論