08年中考二次函數(shù)壓軸題16道教師_第1頁
08年中考二次函數(shù)壓軸題16道教師_第2頁
08年中考二次函數(shù)壓軸題16道教師_第3頁
08年中考二次函數(shù)壓軸題16道教師_第4頁
08年中考二次函數(shù)壓軸題16道教師_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、1、(本題滿分 10 分)如圖,在平面直角坐標(biāo)系中,拋物線 y = 2 x 2 + b x + c 經(jīng)3過 A(0,4)、B( x 1 ,0)、 C( x 2 ,0)三點,且 x 2 - x 1 =5(1)求b 、c 的值;(4 分)(2)在拋物線上求一點 D,使得四邊形 BDCE 是以 BC 為對角線的菱形;(3 分)x(3)在拋物線上是否存在一點 P,使得四邊形 BPOH 是以O(shè)B 為對角線的菱形?若存在,求出點 P 的坐標(biāo),并這個菱形是否為正方形?若不存在,請說明理由(3 分)解:(第 25 題圖)解:(1)解法一:拋物線 y = 2 x3 c =4 1 分2 + b x + c 經(jīng)過點

2、 A(0,4),又由題意可知, x 、 x是方程 2 x 2 + b x + c =0 的兩個根,1233=2b , xx= 3 c =6 ································ x + x·····&#

3、183;····················2 分121222由已知得( x 2 - x 1 ) =259=4又( x- x) 2 =( x+ x ) 2 4 xxb 2 242121129b 2 24=254解得b =±·············

4、3;··················14·······························&#

5、183;····························3 分3當(dāng)b = 14 時,拋物線與 x 軸的交點在 x 軸的正半軸上,不合題意,舍去3 b = 14 ············

6、3;···················3······························

7、83;····························4 分解法二: x 、 x是方程 2x 2 + b x +c=0 的兩個根,123即方程 2 x 2 3 b x +12=0 的兩個根3b ±9b 2 - 96 x =, ······&#

8、183;·················································&#

9、183;········ 2 分41yBCOA9b2 - 96 x 2 x 1 =5,214解得 b =±································3(以下與解法一相同

10、)··················································

11、;3 分(2)四邊形 BDCE 是以 BC 為對角線的菱形,根據(jù)菱形的性質(zhì),點 D 必在拋物線的對稱軸上,又 y = 23········································

12、;························x 4= 2 ( x + 7 ) 2 + 25····················5 分2 143x

13、83;····························6 分326725拋物線的頂點( ,)即為所求的點 D ·················

14、;················ 7 分26(3)四邊形 BPOH 是以 OB 為對角線的菱形,點 B 的坐標(biāo)為(6,0),根據(jù)菱形的性質(zhì),點 P 必是直線 x =-3 與拋物線 y = 2 x2 - 14x -4 的交點, ·················

15、3;··································8 分33當(dāng) x =3 時, y = 2 ×(3) 2 14 ×(3)4=4,33在拋物線上存在一點 P(3,4),使得四邊形 BPOH 為菱形 ··

16、;·············9 分四邊形 BPOH 不能成為正方形,因為如果四邊形 BPOH 為正方形,點 P 的坐標(biāo)只能是(3,3),但這一點不在拋物線上 ··························

17、···················10 分2、(本小題滿分 10 分)已知點 A(a, y )、B(2a,y )、C(3a,y )都在拋物線 y = 5x 2 + 12x 上.312(1) 求拋物線與 x 軸的交點坐標(biāo);(2) 當(dāng) a=1 時,求ABC 的面積;(3) 是否存在含有 y1 、y 2 、y 3 ,且與 a 無關(guān)的等式?如果存在,試給出一個,并加以證明;如果不存在,說明理由.(08肇慶 25

18、 題)(本小題滿分 10 分)解:(1)由 5 x2 + 12x =0, ············································

19、;······················· (1 分)12得 x1 = 0 , x2 = - ······················

20、83;················································(2 分)5拋物線

21、與 x 軸的交點坐標(biāo)為(0,0)、( - 12 ,0) ································5(2)當(dāng) a=1 時,得 A(1,17)、B(2,44)、C(3,81), ·······

22、;····················(3 分)(4 分)分別過點 A、B、C 作 x 軸的垂線,垂足分別為 D、E、F,則有SDABC =S 梯形ADFC - S梯形ADEB - S梯形BEFC················

23、3;····························(5 分)2= (17 + 81) ´ 2 - (17 + 44) ´1 - (44 + 81) ´1··········

24、3;····················(6 分)22面積) ····························

25、;····2=5(個······························(7 分)(3)如: y3 = 3( y2 - y1 ) ··········&

26、#183;·················································&

27、#183;··(8 分)事實上, y3 = 5 ´ (3a) + 12 ´ (3a)2=45a2+36a3( y2 - y1 )=35×(2a)2+12×2 a-(5a2+12a) =45a2+36a ···········(9 分) y3 = 3( y2 - y1 ) ·············&

28、#183;·················································&

29、#183;········(10 分),在平面直角坐標(biāo)系中,矩形 ABOC 的邊 BO 在 x 軸的負(fù)半軸上,邊OC 在 y3、軸的正半軸上,且 AB = 1, OB =3 ,矩形 ABOC 繞點O 按順時針方向旋轉(zhuǎn)60后得到矩形 EFOD 點 A 的對應(yīng)點為點 E ,點 B 的對應(yīng)點為點 F ,點C 的對應(yīng)點為點 D ,拋物線 y = ax2 + bx + c 過點 A,E,D y(1)點 E 是否在 y 軸上,并說明理由;EFA(2)求拋物線的函數(shù)表達式;CD(3)在 x 軸的上方是否存在點 P ,點Q ,使以

30、點O,B,P,Q 為頂點的平行四邊形的面積是矩形 ABOC 面積的 2 倍,且點 P 在拋物線上, 若存在,請求出點 P ,點Q 的坐標(biāo);若不存在,請說明理由xBO第26 題圖(08 遼寧沈陽 26 題)解:(1)點 E 在 y 軸上······························

31、83;·············1 分理由如下:,在RtABO 中, AB = 1, BO =3 , AO = 2連接 AO ,sin ÐAOB = 1 ,ÐAOB = 302由題意可知: ÐAOE = 60ÐBOE = ÐAOB + ÐAOE = 30 + 60 = 90點 B 在 x 軸上,點 E 在 y 軸上 ·······

32、3;························(2)過點 D 作 DM x 軸于點 MOD = 1, ÐDOM = 30··················

33、3;············3 分在RtDOM 中, DM = 1 , OM =2323點 D 在第一象限,點 D 的坐標(biāo)為æ1 ö3, ÷ ·························

34、3;·················································

35、3;·5 分ç22 øè由(1)知 EO = AO = 2 ,點 E 在 y 軸的正半軸上點 E 的坐標(biāo)為(0,2)點 A 的坐標(biāo)為(- 3,1) ··································&#

36、183;············································6 分拋物線 y = ax2 + bx + c 經(jīng)過點 E ,c

37、 = 2由題意,將 A(- 3,1) , D æ1 ö代入 y = ax2 + bx + 2 中得3, ÷ç22 øèìa =- 8ì3a -3b + 2 = 1ïï9í 3解得í3212a +b + 2 =5 3ïïb =- î 4ïî9所求拋物線表達式為: y = - 8 x2 - 5 3 x + 2 ··········&

38、#183;·····································9 分99(3)存在符合條件的點 P ,點Q ········&#

39、183;·················································&#

40、183;···10 分理由如下: 矩形 ABOC 的面積= AB BO =3以O(shè),B,P,Q 為頂點的平行四邊形面積為2 3 由題意可知OB 為此平行四邊形一邊,又 OB =3OB 邊上的高為 2 ·······························

41、·依題意設(shè)點 P 的坐標(biāo)為(m,2)··············································&

42、#183;·····11 分點 P 在拋物線 y = - 8 x2 - 5 3 x + 2 上99- 8 m2 - 5 3 m + 2 = 299解得, m = 0 , m =- 531284 P (0,2) , P æ - 5,÷ö232 ç18èø以O(shè),B,P,Q 為頂點的四邊形是平行四邊形, PQ OB , PQ = OB =3 ,y當(dāng)點 P1 的坐標(biāo)為(0,2) 時,EFAC點Q 的坐標(biāo)分別為Q1 (- 3,2) , Q2 (3,2) ;DxBO Mæ - 5

43、6;3當(dāng)點 P 的坐標(biāo)為,2 ÷ 時,ç28èøæ - 13 3öæ 3ö3點Q 的坐標(biāo)分別為Q,2 ÷ , Q4 ç,2 ÷ ······························&

44、#183;·········14 分3 ç88èøèø4、如圖 16,在平面直角坐標(biāo)系中,直線 y = - 3x - 3 與 x 軸交于點 A ,與y 軸交于點C ,拋物線 y = ax2 - 2 3 x + c(a ¹ 0) 經(jīng)過 A,B,C 三點3y(1)求過 A,B,C 三點拋物線的式并求出頂點 F 的坐標(biāo);(2) 在拋物線上是否存在點 P ,使ABP 為直角三角形,若存在, 直接寫出 P 點坐標(biāo);若不存在,請說明理由;(3) 試探究在直線

45、 AC 上是否存在一點 M ,使得MBF 的周長最小,若存在,求出 M 點的坐標(biāo);若不存在,請說明理由(08 遼寧 12 市 26 題)解:(1) 直線 y = - 3x - 3 與 x 軸交于點 A ,與 y 軸交于點C xOBACF圖 16 A(-1,0) , C(0,- 3) ··························&#

46、183;·····點 A,C 都在拋物線上,··········································&

47、#183;··1 分ì2 30 = a + cìa =3ïïí3í3ï-ïc =- 33 = cîî3 x2 - 23 x - 3 ·····························

48、···拋物線的式為 y =·················3 分33æ3 ö4頂點 F ç1,-÷ ·····················

49、83;·················································

50、83;··········4 分3èø5(2)存在 ································P1(0,- 3) ··

51、······························P2 (2,- 3) ··················&

52、#183;·············(3)存在 ································理由: 解法一:··

53、;··················································

54、;············5 分·····································&#

55、183;························7 分·························

56、;····································9 分·············&#

57、183;················································10 分延長 B

58、C 到點 B¢ ,使 B¢C = BC ,連接 B¢F 交直線 AC 于點 M ,則點 M 就是所求的點································過點 B¢作 B¢H AB 于點 H ··

59、·······································11 分y3 x2 - 23 x -B 點在拋物線 y =3 上, B(3,0)33Hx3OBA在RtBOC 中, tan 

60、8;OBC =,3CM FBÐOBC = 30 , BC = 2 3 ,在RtBB¢H 中, B¢H = 1 BB¢ = 2 3 ,2BH =3B¢H = 6 ,OH = 3 , B¢(-3,- 2圖 93) ···························

61、83;············12 分設(shè)直線 B¢F 的式為 y = kx + bìk =36ì-2 3 = -3k + bïïí 4 3- = k + b解得í3 3ïïb =- î3ïî23 x - 3 3 y =············

62、;··················································

63、;····················13 分62ìx = 3ì y = - 3x - 3 M æ 3 ,- 10 3 öïï7í33 3y =x -解得íç 7÷710 3ïï y =- èøî62ïî7在直線 AC 上存在

64、點 M ,使得MBF 的周長最小,此時 M æ 3 ,- 103 ö ··14 分ç 7÷7èø5、如圖 14,已知半徑為 1 的 O1 與 x 軸交于 A,B 兩點,OM 為 O1 的切線,切點為 M ,圓心O 的坐標(biāo)為(2,0) ,二次函數(shù) y = -x2 + bx + c 的圖象經(jīng)過 A,B 兩點16(1)求二次函數(shù)的式;(2)求切線OM 的函數(shù)式;y(3)線段OM 上是否存在一點 P ,使得以 P,O,A 為頂點的三角形與OO1M 相似若存在,請求出所有符合條件的點 P 的坐標(biāo);若不存在,請說明理由MAO1

65、BOx)解:(1) 圓心O1 的坐標(biāo)為(2,0) , O1(08 青海西寧 28 題圖 14半徑為 1, A(1,0) , B(3,0) 1 分二次函數(shù) y = -x2 + bx + c 的圖象經(jīng)過點 A,B ,可得方程組ì-1+ b + c = 0í-9 + 3b + c = 0·························

66、;············································2 分îìb = 4解得:二次函數(shù)式為 y = -

67、x2 + 4x - 3 ································íc = -3·······3 分î(2)過點 M 作 MF x 軸,垂足為 F ·

68、3;·················································

69、3;··4 分OM 是 O1 的切線,M 為切點,O1M OM (圓的切線垂直于經(jīng)過切點的半徑)= O1M = 1y在RtOO M 中, sin ÐO OM11OO21MP21PÐO OM 為銳角,ÐO OM = 30 ························5 分11xOHAFBO13 =OM =

70、OO cos 30 = 2 ´3 ,123 = 3 在RtMOF 中, OF = OM cos 30 =3 ´22MF = OM sin 30 =3 ´ 1 =322點 M 坐標(biāo)為æ 3 , 3 ö ·····························&

71、#183;···············································6 分ç 2&#

72、247;2èø式為 y = kx(k ¹ 0) ,由題意可知 3 = 3 k , k =33設(shè)切線OM 的函數(shù)·····7 分22式為 y =3 x ·······························

73、;·切線OM 的函數(shù)···························8 分37(3)存在 ··················

74、3;·················································

75、3;························9 分過點 A 作 AP1 x 軸,與OM 交于點 P1 可得RtAP1O RtMO1O (兩角對應(yīng)相等兩三角形相似)æ, 3 ö ·············

76、···················P A = OA tan ÐAOP = tan 30 =3 , P ç11·····10 分÷1133èø過點 A 作 AP2 OM ,垂足為 P2 ,過 P2 點作 P2 H OA ,垂足為 H 可得RtAP2O RtO1MO (兩角對應(yīng)相等兩三角開相似)3,2在RtO

77、P A 中, OA = 1,OP = OA cos 30=223 ´3 = 3 ,在RtOP H 中, OH = OP cosÐAOP =222224, P æ , ö ································333

78、3 ´ 1 =P H = OP sin ÐAOP =· 11 分2 ç 4÷2222244èø符合條件的 P 點坐標(biāo)有æ1, 3 ö , æ 3 , 3 ö ···························

79、3;··················12 分ç÷ç 4÷34èøèø6、(12 分)ABC 中,ÐC = 90,ÐA = 60,AC = 2 cm長為 1cm 的線段 MN 在ABC的邊 AB 上沿 AB 方向以 1cm/s 的速度向點 B 運動(運動前點 M 與點 A 重合)過 M,N 分別作 AB 的垂線交直角

80、邊于 P,Q 兩點,線段 MN 運動的時間為t s(1) 若AMP 的面積為 y ,寫出 y 與t 的函數(shù)關(guān)系式(寫出自變量t 的取值范圍);(2) 線段 MN 運動過程中,四邊形 MNQP 有可能成為矩形嗎?若有可能,求出此時t 的值;若不可能,說明理由;(3) t 為何值時,以C,P,Q 為頂點的三角形與ABC 相似?AM = t ,) 解 :( 1 ) 當(dāng) 點 P在 AC 上 時 ,( 08 山 東 濟 寧 26 題 PM = AMtg 60 =3t y = 1 t3 t 2 (0 t 1) ········

81、························23t =·························&

82、#183;····2 分283 (4 - t) = BM tan 30 =當(dāng)點 P 在 BC 上時, PM3y = 1 t3 (4 - t) = -3 t 2 + 23 t(1 t 3) ·······························

83、············4 分2363AC = 2 , AB = 4 BN = AB - AM - MN = 4 - t -1 = 3 - t (2)QN = BN tan 30 =3 (3 - t) ·······················&

84、#183;······································6 分33 (3 - t) ,由條件知,若四邊形 MNQP 為矩形,需 PM = QN ,即3t =33t =4當(dāng)t = 3 s 時,

85、四邊形 MNQP 為矩形················································

86、········8 分4(3)由(2)知,當(dāng)t = 3 s 時,四邊形 MNQP 為矩形,此時 PQ AB ,4PQC ABC ································

87、3;··············································9 分除此之外,當(dāng)ÐCPQ = &

88、#208;B = 30 時, QPC ABC ,此時 CQ = tan 3033=CPAM1= cos 60 =, AP = 2AM = 2t CP = 2 - 2t ························210 分APBN BQ= cos 30 =3 , BQ = BN= 23 (3 - t) 23323 - 2 3 (3 - t) = 23t

89、································BC = 23 ,CQ = 2··11 分又332 3t31, t = 3=2 - 2t32當(dāng)t = 1 s3或 s 時,以C,P,Q 為頂點的三角形24與ABC 相似 ··&

90、#183;·················································&

91、#183;·7、(12 分)30已知:如圖 14,拋物線 y = - 3 x2 + 3 與4x 軸交于點 A ,點 B ,與直線 y = - 3 x + b 相交于點 B ,點C ,直線 y = - 3 x + b 與 y 軸44交于點 E (1) 寫出直線 BC 的(2) 求ABC 的面積式(3)若點 M段 AB 上以每秒 1 個長度的速度從 A 向 B 運動(不與 A,B 重合),同時,點 N 在射線 BC 上以每秒長度的速度從 B 向C 運動設(shè)運動時間為t 秒,2 個請寫出MNB 的面積 S 與t 的函數(shù)關(guān)系式,并求出點 M 運動多少時間時,MNB 的面積最大,最大面積是多少?

92、)解:(1)在 y = - 3 x2 + 3 中,令 y = 04(08巴中 30 題y- 3 x2 + 3 = 04CEN x = 2 , x = -212 A(-2,0) , B(2,0) ································又 點 B 在 y =

93、 - 3 x + b 上40 = - 3 + b2b = 3·········1 分MDAOPBx2 BC 的33式為 y = -x +·······························&

94、#183;42···································2 分ì y = - 3 x2 + 3ìx= -1= 94ìx2 = 2ïï14(2)由í,得í

95、 yí y·············································4 分= 033î 2

96、9; y = -x +ïî1ïî42æ9 öC -1, ÷ , B(2,0)çè4 ø AB = 4 , CD = 9 ·······························

97、3;4·················································5 分

98、199 S ABC=´ 4´=································242·············&#

99、183;······························6 分(3)過點 N 作 NP MB 于點 PEO MB NP EOBNP BEO············

100、83;·················································

101、83;···················7 分BNNP=·····························&

102、#183;·················································&

103、#183;···········8 分BEEO1033可得: E æ 03 ö由直線 y = -x +, ÷ç42è2 ø在BEO 中, BO = 2 , EO = 3 ,則 BE = 522 2t = NP , NP = 6 t ················

104、83;·················································

105、83;········9 分53522S = 1(4 - t)6 t2 5S = - 3 t 2 + 12 t(0 < t < 4) ·······························&

106、#183;55S = - 3 (t - 2)2 + 12 ·············································&

107、#183;··························10 分······················

108、83;·························11 分55= 12此拋物線開口向下,當(dāng)t = 2 時, S最大5當(dāng)點 M 運動 2 秒時, MNB 的面積達到最大,最大為12 ·············

109、3;·········12 分58、(10 分)某工廠要趕制一批抗震救災(zāi)用的大型活動板房如圖,板房一面的形狀是由矩形和拋物線的一部分組成,矩形長為 12m,拋物線拱高為 5.6m(1)在的平面直角坐標(biāo)系中,求拋物線的表達式(2)現(xiàn)需在拋物線 AOB 的區(qū)域內(nèi)安裝幾扇窗戶,窗戶的底邊在 AB 上,每扇窗戶寬 1.5m,高 1.6m,相鄰窗戶之間的間距均為 0.8m,左右兩邊窗戶的窗角所在的點到拋物線的水平距離至少為 0.8m請計算最多可安裝幾扇這樣的窗戶?)24(10 分)解:(1)設(shè)拋物線的表達式為 y

110、= ax2(0824 題1分點 B(6,- 5.6) 在拋物線的圖象上 -5.6 = 36aa =-································7·········

111、83;···········3 分4511拋物線的表達式為 y =- 7································x2··

112、83;······························· 4 分45(2)設(shè)窗戶上邊所在直線交拋物線于 C、D 兩點,D 點坐標(biāo)為(k,t)已知窗戶高 1.6m, t = -5.6 - ( -1.6) = -4 ·····

113、83;··························-4 = -7 k 245···················5 分k1 5.07,k2

114、-5.07 (舍去) ································ CD = 5.07´ 2 10.14 (m) ···········&#

115、183;····················又設(shè)最多可安裝 n 扇窗戶1.5n + 0.8(n +1) 10.14 ·······················&#

116、183;········n 4.06 ································· 6 分······

117、83;···························· 7 分·····················

118、;····················9 分答:最多可安裝 4 扇窗戶 ···························

119、·····(本題不要求學(xué)生畫出 4 個表示窗戶的小矩形)·······································10 分9、本題滿分 11

120、 分如圖 11 所示,在梯形 ABCD 中,已知 ABCD,ADDB,AD=DC=CB,AB=4以AB 所在直線為 x 軸,過 D 且垂直于 AB 的直線為 y 軸建立平面直角坐標(biāo)系(1)求DAB 的度數(shù)及 A、D、C 三點的坐標(biāo);(2)求過 A、D、C 三點的拋物線的式及其對稱軸 L(3)若 P 是拋物線的對稱軸 L 上的點,那么使D PDB 為等腰三角形的點 P 有幾個?(不必求點 P 的坐標(biāo),只需說明理由)(08梅州 23 題解答)解:(1) QDCAB,AD=DC=CB, CDB=CBD=DBA,·······

121、83;························DAB=CBA, DAB=2DBA, ······················&#

122、183;······ ············1 分····· 0.5 分DAB+DBA=90 o , DAB=60 o ,·········1.5 分DBA=30 o ,QAB=4,DC=AD=2,······

123、3;·2 分Rt D AOD,OA=1,OD=3 , ·······················2.5 分A(-1,0),D(0,3 ),C(2,3 )4 分(2)根據(jù)拋物線和等腰梯形的對稱性知,滿足條件的拋物線必過點 A(1,0),B(3,0),故可設(shè)所求為y = a ( x +1)(x -3) ····

124、3;················································6 分33將點 D(

125、0,3 )的坐標(biāo)代入上式得, a = -式為y = -3 (x + 1)(x - 3).所求拋物線的····································7 分3其對稱軸 L 為直線 x =1 ·······················&

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論