版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1第八章 反常積分-廣義積分 1 廣義積分的概念與計(jì)算廣義積分的概念與計(jì)算 2 廣義積分的收斂判別法廣義積分的收斂判別法 3 習(xí)題課習(xí)題課2 1、給出了反常積分的概念。給出了反常積分的概念。2、給出了反常積分的計(jì)算。給出了反常積分的計(jì)算。3、給出了反常積分的斂散性判別方法給出了反常積分的斂散性判別方法。教學(xué)內(nèi)容:教學(xué)內(nèi)容:教學(xué)重點(diǎn)教學(xué)重點(diǎn):反常積分的概念;反常積分的判斂方法。反常積分的概念;反常積分的判斂方法。要求要求:1、理解反常積分的概念。理解反常積分的概念。2、熟練掌握求反常積分的判斂方法,并會(huì)計(jì)算熟練掌握求反常積分的判斂方法,并會(huì)計(jì)算反常積分。反常積分。本章內(nèi)容、要求及重點(diǎn)本章內(nèi)容、要
2、求及重點(diǎn)3第一節(jié) 反常積分的概念與計(jì)算 1 無窮限的廣義(反常)積分無窮限的廣義(反常)積分 2 無界函數(shù)的廣義(反常)積分無界函數(shù)的廣義(反常)積分 3 小結(jié)小結(jié)4定定義義 1 1 設(shè)設(shè)函函數(shù)數(shù))(xf在在區(qū)區(qū)間間), a上上連連續(xù)續(xù),取取ab ,如如果果極極限限 babdxxf)(lim存存在在,則則稱稱此此極極限限為為函函數(shù)數(shù))(xf在在無無窮窮區(qū)區(qū)間間), a上上的的廣廣義義積積分分,記記作作 adxxf)(. . adxxf)( babdxxf)(lim當(dāng)當(dāng)極極限限存存在在時(shí)時(shí),稱稱廣廣義義積積分分收收斂斂;當(dāng)當(dāng)極極限限不不存存在在時(shí)時(shí),稱稱廣廣義義積積分分發(fā)發(fā)散散. .一、無窮限的
3、廣義積分一、無窮限的廣義積分5類似地,設(shè)函數(shù)類似地,設(shè)函數(shù))(xf在區(qū)間在區(qū)間,(b 上連續(xù),取上連續(xù),取ba ,如果極限,如果極限 baadxxf)(lim存在,則稱此極存在,則稱此極限為函數(shù)限為函數(shù))(xf在無窮區(qū)間在無窮區(qū)間,(b 上的廣義積上的廣義積分,記作分,記作 bdxxf)(. . bdxxf)( baadxxf)(lim當(dāng)當(dāng)極極限限存存在在時(shí)時(shí),稱稱廣廣義義積積分分收收斂斂;當(dāng)當(dāng)極極限限不不存存在在時(shí)時(shí),稱稱廣廣義義積積分分發(fā)發(fā)散散. .6 設(shè)設(shè)函函數(shù)數(shù))(xf在在區(qū)區(qū)間間),( 上上連連續(xù)續(xù), ,如如果果廣廣義義積積分分 0)(dxxf和和 0)(dxxf都都收收斂斂,則則稱
4、稱上上述述兩兩廣廣義義積積分分之之和和為為函函數(shù)數(shù))(xf在在無無窮窮區(qū)區(qū)間間),( 上上的的廣廣義義積積分分,記記作作 dxxf)(. . dxxf)( 0)(dxxf 0)(dxxf 0)(limaadxxf bbdxxf0)(lim極極限限存存在在稱稱廣廣義義積積分分收收斂斂;否否則則稱稱廣廣義義積積分分發(fā)發(fā)散散. .7例例1 1 計(jì)算廣義積分計(jì)算廣義積分.12 xdx解解 21xdx 021xdx 021xdx 0211limaadxx bbdxx0211lim 0arctanlimaax bbx0arctanlim aaarctanlim bbarctanlim .22 8例例2 2
5、 計(jì)算廣義積分計(jì)算廣義積分解解.1sin122 dxxx 21sin12dxxx 211sinxdx bbxdx211sinlimbbx 21coslim 2cos1coslim bb. 1 9例例 3 3 證明廣義積分證明廣義積分 11dxxp當(dāng)當(dāng)1 p時(shí)收斂,時(shí)收斂,當(dāng)當(dāng)1 p時(shí)發(fā)散時(shí)發(fā)散.證證, 1)1( p 11dxxp 11dxx 1ln x, , 1)2( p 11dxxp 111pxp 1,111,ppp因此當(dāng)因此當(dāng)1 p時(shí)廣義積分收斂,其值為時(shí)廣義積分收斂,其值為11 p;當(dāng)當(dāng)1 p時(shí)廣義積分發(fā)散時(shí)廣義積分發(fā)散.10例例 4 4 證明廣義積分證明廣義積分 apxdxe當(dāng)當(dāng)0 p
6、時(shí)收斂,時(shí)收斂,當(dāng)當(dāng)0 p時(shí)發(fā)散時(shí)發(fā)散.證證 apxdxe bapxbdxelimbapxbpe lim pepepbpablim 0,0,pppeap即即當(dāng)當(dāng)0 p時(shí)時(shí)收收斂斂,當(dāng)當(dāng)0 p時(shí)時(shí)發(fā)發(fā)散散.11定義定義 2 2 設(shè)函數(shù)設(shè)函數(shù))(xf在區(qū)間在區(qū)間,(ba上連續(xù),而在上連續(xù),而在點(diǎn)點(diǎn)a的右鄰域內(nèi)無界取的右鄰域內(nèi)無界取0 ,如果極限,如果極限 badxxf )(lim0存在,則稱此極限為函數(shù)存在,則稱此極限為函數(shù))(xf在區(qū)間在區(qū)間,(ba上的廣義積分,記作上的廣義積分,記作 badxxf)(. . badxxf)( badxxf )(lim0當(dāng)當(dāng)極極限限存存在在時(shí)時(shí),稱稱廣廣義義積積
7、分分收收斂斂;當(dāng)當(dāng)極極限限不不存存在在時(shí)時(shí),稱稱廣廣義義積積分分發(fā)發(fā)散散. .二、無界函數(shù)的廣義積分二、無界函數(shù)的廣義積分12類似地,設(shè)函數(shù)類似地,設(shè)函數(shù))(xf在區(qū)間在區(qū)間),ba上連續(xù),上連續(xù),而在點(diǎn)而在點(diǎn)b的左鄰域內(nèi)無界的左鄰域內(nèi)無界. .取取0 ,如果極限,如果極限 badxxf)(lim0存在,則稱此極限為函數(shù)存在,則稱此極限為函數(shù))(xf在區(qū)間在區(qū)間),ba上的廣義積分,上的廣義積分,記作記作 badxxf)( badxxf)(lim0. .當(dāng)當(dāng)極極限限存存在在時(shí)時(shí),稱稱廣廣義義積積分分收收斂斂;當(dāng)當(dāng)極極限限不不存存在在時(shí)時(shí),稱稱廣廣義義積積分分發(fā)發(fā)散散. .13設(shè)函數(shù)設(shè)函數(shù))(x
8、f在區(qū)間在區(qū)間,ba上除點(diǎn)上除點(diǎn))(bcac 外連外連續(xù),而在點(diǎn)續(xù),而在點(diǎn)c的鄰域內(nèi)無界的鄰域內(nèi)無界. .如果兩個(gè)廣義積分如果兩個(gè)廣義積分 cadxxf)(和和 bcdxxf)(都收斂,則定義都收斂,則定義 badxxf)( cadxxf)( bcdxxf)( cadxxf)(lim0 bcdxxf )(lim0否否則則,就就稱稱廣廣義義積積分分 badxxf)(發(fā)發(fā)散散. .定義中定義中C為為瑕點(diǎn)瑕點(diǎn),以上積分稱為,以上積分稱為瑕積分瑕積分.14例例5 5 計(jì)算廣義積分計(jì)算廣義積分解解).0(022 axadxa,1lim220 xaaxax 為為被被積積函函數(shù)數(shù)的的無無窮窮間間斷斷點(diǎn)點(diǎn).
9、axadx022 axadx0220lim aax00arcsinlim 0arcsinlim0aa .2 15例例 6 6 證明廣義積分證明廣義積分 101dxxq當(dāng)當(dāng)1 q時(shí)收斂,當(dāng)時(shí)收斂,當(dāng)1 q時(shí)發(fā)散時(shí)發(fā)散.證證, 1)1( q 101dxx 10ln x , , 1)2( q 101dxxq1011 qxq 1,111,qqq因此當(dāng)因此當(dāng)1 q時(shí)廣義積分收斂,其值為時(shí)廣義積分收斂,其值為q 11;當(dāng)當(dāng)1 q時(shí)廣義積分發(fā)散時(shí)廣義積分發(fā)散. 101dxxq16例例7 7 計(jì)算廣義積分計(jì)算廣義積分解解.ln21 xxdx 21ln xxdx 210lnlim xxdx 210ln)(lnl
10、im xxd 210)ln(lnlim x )1ln(ln()2ln(lnlim0 . 故原廣義積分發(fā)散故原廣義積分發(fā)散.17例例8 8 計(jì)算廣義積分計(jì)算廣義積分解解.)1(3032 xdx1 x瑕點(diǎn)瑕點(diǎn) 3032)1(xdx 103132)1()(xdx 1032)1(xdx 10032)1(limxdx3 3132)1(xdx 31032)1(lim xdx, 233 3032)1(xdx).21(33 18無界函數(shù)的廣義積分(無界函數(shù)的廣義積分(瑕積分瑕積分)無窮限的廣義積分無窮限的廣義積分 dxxf)( bdxxf)( adxxf)( cabcbadxxfdxxfdxxf)()()((
11、注意注意:不能忽略內(nèi)部的瑕點(diǎn)):不能忽略內(nèi)部的瑕點(diǎn)) badxxf)(三、小結(jié)三、小結(jié) 作業(yè):作業(yè):P368 2 ;3(3)(6)(8);4(1)(2)(5); 6(1)(4);12. 19思考題思考題積分積分 的瑕點(diǎn)是哪幾點(diǎn)?的瑕點(diǎn)是哪幾點(diǎn)? 101lndxxx20思考題解答思考題解答積分積分 可能的瑕點(diǎn)是可能的瑕點(diǎn)是 101lndxxx1, 0 xx1lnlim1 xxx, 11lim1 xx1 x不是瑕點(diǎn)不是瑕點(diǎn), 101lndxxx的瑕點(diǎn)是的瑕點(diǎn)是. 0 x21一、一、 填空題:填空題:1 1、 廣義積分廣義積分 1pxdx當(dāng)當(dāng)_時(shí)收斂;當(dāng)時(shí)收斂;當(dāng)_時(shí)時(shí)發(fā)散;發(fā)散;2 2、 廣義積分
12、廣義積分 10qxdx當(dāng)當(dāng)_時(shí)收斂;當(dāng)時(shí)收斂;當(dāng)_時(shí)發(fā)時(shí)發(fā)散;散;3 3、 廣義積分廣義積分 2)(lnkxxdx在在_時(shí)收斂; 在時(shí)收斂; 在_ 時(shí)發(fā)散;時(shí)發(fā)散; 4 4、廣義積分、廣義積分 dxxx21=_=_;練練 習(xí)習(xí) 題題225 5、 廣義積分廣義積分 1021xxdx_;6 6、 廣義積分廣義積分 xdttf)(的幾何意義是的幾何意義是_ _. .二二、 判判別別下下列列各各廣廣義義積積分分的的收收斂斂性性,如如果果收收斂斂,則則計(jì)計(jì)算算廣廣義義積積分分的的值值:1 1、 0coshtdtept )1( p; 2 2、 222xxdx ;3 3、 0dxexxn(為為自自然然數(shù)數(shù)n) ;4 4、 202)1(xdx;235 5、 211xxdx; 6 6、 022)1(lndxxxx;7 7、 10ln xdxn. .三三、 求求當(dāng)當(dāng)為為何何值值時(shí)時(shí)k,廣廣義義積積分分)()(abaxdxbak 收收斂斂?又又為為何何值值時(shí)時(shí)k,這這廣廣義義積積分分發(fā)發(fā)散散?四四、 已已知知 xxxxxf2,120,210,0)(,試試用用分分段段函函數(shù)數(shù)表表示示 xdttf)(. .24一、一、1 1、1, 1 pp;2 2、1,1 qq; 3 3、1,1 kk;4 4、發(fā)散;、發(fā)散; 5 5、1 1; 6 6、過點(diǎn)、過點(diǎn)軸軸平平行行于于 yx的直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度共享健身房租賃與健身器材更新服務(wù)合同
- 二零二五年度財(cái)產(chǎn)分割離婚合同范本3篇
- 2025年度高端會(huì)議室租賃及配套服務(wù)合同范本
- 二零二五年度茶園茶葉文化體驗(yàn)區(qū)建設(shè)合同范本4篇
- 二零二四年度事業(yè)單位合同風(fēng)險(xiǎn)防控與業(yè)務(wù)流程再造協(xié)議3篇
- 2025年度回遷安置房購買合同示范文本
- 二零二五年度城市品牌策劃與推廣合同4篇
- 2025年度時(shí)尚美容合作經(jīng)營店鋪協(xié)議合同范本
- 2025年度海上風(fēng)電設(shè)備保險(xiǎn)合同范本
- 2025年度智能農(nóng)業(yè)技術(shù)應(yīng)用合同范本
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 2025年第一次工地開工會(huì)議主要議程開工大吉模板
- 第16課抗日戰(zhàn)爭(zhēng)課件-人教版高中歷史必修一
- 對(duì)口升學(xué)語文模擬試卷(9)-江西省(解析版)
- 糖尿病高滲昏迷指南
- 壁壘加筑未來可期:2024年短保面包行業(yè)白皮書
- 環(huán)保局社會(huì)管理創(chuàng)新方案市環(huán)保局督察環(huán)保工作方案
- 2024至2030年中國水質(zhì)監(jiān)測(cè)系統(tǒng)行業(yè)市場(chǎng)調(diào)查分析及產(chǎn)業(yè)前景規(guī)劃報(bào)告
- 運(yùn)動(dòng)技能學(xué)習(xí)
- 單側(cè)雙通道內(nèi)鏡下腰椎間盤摘除術(shù)手術(shù)護(hù)理配合1
評(píng)論
0/150
提交評(píng)論