初中數(shù)學(xué)優(yōu)秀說課稿教案大集合1 2_第1頁
初中數(shù)學(xué)優(yōu)秀說課稿教案大集合1 2_第2頁
初中數(shù)學(xué)優(yōu)秀說課稿教案大集合1 2_第3頁
初中數(shù)學(xué)優(yōu)秀說課稿教案大集合1 2_第4頁
初中數(shù)學(xué)優(yōu)秀說課稿教案大集合1 2_第5頁
已閱讀5頁,還剩188頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、初中數(shù)學(xué)優(yōu)秀說課稿大集合全部說課稿目錄16.3分式方程解法說課稿17.2反比例函數(shù)說課稿18.1探索勾股定理第一課時(shí)說課稿18.1勾股定理說課稿勾股定理說課稿18.2勾股定理的逆定理說課稿19.1平行四邊形的說課稿19.2.2菱形(1)定義與性質(zhì)說課稿20.2數(shù)據(jù)的波動(dòng)說課稿(第一課時(shí))除法說課稿矩形(第一課時(shí))說課稿實(shí)際問題與反比例函數(shù)(第三課時(shí))教案說明平行四邊形的判定(1)說課稿分式的意義說課稿“形的判定”說課稿菱形(第2課時(shí))16.3分式方程解法說課稿課標(biāo)指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程?!睆慕處煹慕虒W(xué)角度上看:教師是進(jìn)行數(shù)學(xué)活動(dòng)的組織者、

2、引領(lǐng)者,是教學(xué)活動(dòng)的主導(dǎo);從學(xué)生的學(xué)習(xí)角度上看:數(shù)學(xué)活動(dòng)是學(xué)生經(jīng)歷數(shù)學(xué)化過程的活動(dòng),是學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng),是學(xué)習(xí)活動(dòng)的主體;從師生的合作角度上看:數(shù)學(xué)活動(dòng)過程是教師與學(xué)生之間互動(dòng)的過程,是師生共同發(fā)展的過程,即要促進(jìn)學(xué)生發(fā)展,也要促進(jìn)教師成長。教師作為數(shù)學(xué)教學(xué)主導(dǎo),在設(shè)計(jì)數(shù)學(xué)活動(dòng)時(shí)要遵循以下原則:一、根據(jù)學(xué)生的年齡特征與認(rèn)知特點(diǎn)組織教學(xué)。二、重視培養(yǎng)學(xué)生的應(yīng)用意識(shí)與實(shí)踐能力。1、讓學(xué)生在現(xiàn)實(shí)情境與已有的生活與知識(shí)經(jīng)驗(yàn)中體驗(yàn)與理解數(shù)學(xué)。2、培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與提高解決問題的能力。三、重視引導(dǎo)學(xué)生自主探索,培養(yǎng)學(xué)生的創(chuàng)新精神。1、引導(dǎo)學(xué)生動(dòng)手實(shí)踐、自主探索與合作交流。2、鼓勵(lì)學(xué)生解決問

3、題策略的多樣化。四、教師對教學(xué)目標(biāo),難點(diǎn),重點(diǎn)把握要恰當(dāng)、具體。數(shù)的計(jì)算非常重要,計(jì)算是幫助我們解決問題的工具,只有在具體的情境中才能讓學(xué)生真正認(rèn)識(shí)計(jì)算的作用。首先應(yīng)當(dāng)讓學(xué)生理解的是面對具體的情境,確定是否需要計(jì)算,然后再確定需要什么樣的計(jì)算方法??谒恪⒐P算、估算、計(jì)算器與計(jì)算機(jī)都是供學(xué)生選擇的方式,都可以達(dá)到算出結(jié)果的目的。一、設(shè)計(jì)思想:數(shù)學(xué)來源于生活,數(shù)學(xué)教學(xué)應(yīng)走進(jìn)生活,生活也應(yīng)走進(jìn)數(shù)學(xué),數(shù)學(xué)與生活的結(jié)合,會(huì)使問題變得具體、生動(dòng),學(xué)生就會(huì)產(chǎn)生親近感、探究欲,從而誘發(fā)內(nèi)在學(xué)習(xí)潛能,主動(dòng)動(dòng)手、動(dòng)口、動(dòng)腦。因此,在教學(xué)中,我們應(yīng)自覺地把生活作為課堂,讓數(shù)學(xué)回歸生活,服務(wù)生活。培養(yǎng)學(xué)生的動(dòng)手能力與

4、創(chuàng)新能力,豐富與發(fā)展學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)歷,并使學(xué)生充分體會(huì)到數(shù)學(xué)之趣、數(shù)學(xué)之用、數(shù)學(xué)之美。處理好教與學(xué)的關(guān)系。教師既要做到精講精練,又要敢于放手引導(dǎo)學(xué)生參與嘗試與討論,展開思維活動(dòng) 。根據(jù)新教材留給學(xué)生一定的思維空間的特點(diǎn),教師要鼓勵(lì)學(xué)生自己動(dòng)腦參與探索,讓學(xué)生有發(fā)表意見的機(jī)會(huì),絕對不能包辦代替,使學(xué)生不僅能學(xué)會(huì),而且能會(huì)學(xué)。充分發(fā)揮網(wǎng)絡(luò)在課堂教學(xué)中的優(yōu)勢,力爭促進(jìn)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,由被動(dòng)聽講式學(xué)習(xí)轉(zhuǎn)變?yōu)榉e極主動(dòng)的探索發(fā)現(xiàn)式學(xué)習(xí)。數(shù)學(xué)問題生活化,主導(dǎo)主體相結(jié)合,發(fā)揮媒體技術(shù)優(yōu)勢,探究練習(xí)相結(jié)合,符合課標(biāo)精神。網(wǎng)絡(luò)環(huán)境下代數(shù)課的教學(xué)模式:設(shè)置情境-提出問題-自主探究-合作交流-反思評價(jià)-鞏固練習(xí)

5、-總結(jié)提高二、背景分析:(一)學(xué)情分析:內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人民教育出版社)數(shù)學(xué)八年級下冊第十六章:分式學(xué)生是本校初二實(shí)驗(yàn)班的學(xué)生,參加北師大“基礎(chǔ)教育跨越式發(fā)展”課題實(shí)驗(yàn)一年半,學(xué)生基礎(chǔ)知識(shí)較扎實(shí),具有一定探索解決問題的能力,電腦使用水平較熟練,對于網(wǎng)絡(luò)環(huán)境下的學(xué)習(xí)模式已適應(yīng)。本節(jié)課實(shí)施網(wǎng)絡(luò)環(huán)境下教學(xué),采用自學(xué)導(dǎo)讀式教學(xué)模式。學(xué)生喜歡上網(wǎng)絡(luò)數(shù)學(xué)課,學(xué)習(xí)數(shù)學(xué)的興趣較濃。(二)內(nèi)容分析:本節(jié)內(nèi)容是在學(xué)生掌握了一元一次方程的解法與分式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,為后面學(xué)習(xí)可化為一元二次方程的分式方程打下基礎(chǔ)。通過經(jīng)歷實(shí)際問題列分式方程探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世

6、界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識(shí),滲透類比轉(zhuǎn)化思想。(三)教學(xué)方式:自學(xué)導(dǎo)讀同伴互助精講精練(四)教學(xué)媒體:Midea-Class純軟多媒體教學(xué)網(wǎng) 幾何畫板三、教學(xué)目標(biāo):知識(shí)技能:了解分式方程定義,理解解分式方程的一般解法與分式方程可能產(chǎn)生增根的原因,掌握解分式方程驗(yàn)根的方法。過程方法:通過經(jīng)歷實(shí)際問題列分式方程探究解分式方程的過程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識(shí),滲透轉(zhuǎn)化思想。情感態(tài)度:強(qiáng)化用數(shù)學(xué)的意識(shí),增進(jìn)同學(xué)之間的配合,體驗(yàn)在數(shù)學(xué)活動(dòng)中運(yùn)用知識(shí)解決問題的成功體驗(yàn),樹立學(xué)好數(shù)學(xué)的自信心。教學(xué)重點(diǎn):解分式方程的基本

7、思路與解法。教學(xué)難點(diǎn):理解分式方程可能產(chǎn)生增根的原因。設(shè)計(jì)說明:情感、態(tài)度、價(jià)值觀目標(biāo)不應(yīng)該是一節(jié)課或一學(xué)期的教學(xué)目標(biāo),它應(yīng)該貫穿于初中數(shù)學(xué)教學(xué)的每一堂課,它應(yīng)該與具體的數(shù)學(xué)知識(shí)聯(lián)系在一起,才能讓教師好把握,學(xué)生好掌握,否則就是空中樓閣,霧里看花,水中望月。四、板書設(shè)計(jì):a不是分式方程的解(二)學(xué)習(xí)方法:類比與轉(zhuǎn)化教學(xué)思考:伴隨教學(xué)過程的進(jìn)行,不失時(shí)機(jī)的,恰到好處的書寫板書,要比用多媒體呈現(xiàn)出來效果好,絕不能用媒體技術(shù)替代應(yīng)有的板書,現(xiàn)代教育技術(shù)與傳統(tǒng)教育技術(shù)完美的結(jié)合才是提高課堂教學(xué)效率的有效途徑之一。五、教學(xué)過程:活動(dòng)1:創(chuàng)設(shè)情境,列出方程設(shè)計(jì)說明:教師不失時(shí)機(jī)的對學(xué)生進(jìn)行思想教育,激勵(lì)學(xué)

8、生,寓德于教。表達(dá)了教學(xué)評價(jià)之美-激勵(lì)啟迪。設(shè)計(jì)說明:通過經(jīng)歷實(shí)際問題列分式方程,體會(huì)分式方程是一種有效描述現(xiàn)實(shí)世界的模型,發(fā)展學(xué)生分析問題解決問題的能力,培養(yǎng)應(yīng)用意識(shí),激發(fā)學(xué)生的探究欲與學(xué)習(xí)熱情,為探索分式方程的解法做準(zhǔn)備?;顒?dòng)2:總結(jié)定義,探究解法使學(xué)生能從整體上把握數(shù)、式、方程及它們之間的聯(lián)系與區(qū)別;通過合作探究分式方程的解法,培養(yǎng)學(xué)生的探究能力,增強(qiáng)利用類比轉(zhuǎn)化思想解決實(shí)際問題的能力及合作的意識(shí)。教學(xué)思考:再一次表達(dá)了對全章進(jìn)行整體設(shè)計(jì)的好處,在學(xué)習(xí)16.1分式與16.2分式的運(yùn)算時(shí),幾乎每一節(jié)課都運(yùn)用類比的思想-分式與分?jǐn)?shù)類比與進(jìn)行算法多樣化訓(xùn)練,所以才出現(xiàn)了這樣好的效果。在利用媒體

9、技術(shù)拓展學(xué)習(xí)內(nèi)容時(shí)要遵循以下原則:一、拓展內(nèi)容要與所學(xué)內(nèi)容有有機(jī)聯(lián)系。二、拓展內(nèi)容要符合學(xué)生實(shí)際認(rèn)知水平,不要任意拔高。三、拓展內(nèi)容要適量,不要信息過載?;顒?dòng)3:講練結(jié)合,分析增根活動(dòng)5:布置作業(yè),深化鞏固(略)17.2反比例函數(shù)說課稿一、教材分析:反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)與對比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對反比例函數(shù)有一個(gè)形象與直觀的認(rèn)識(shí)。二、教學(xué)目標(biāo)分析根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與

10、教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣與探究欲望,引導(dǎo)學(xué)生積極參與與主動(dòng)探索。因此把教學(xué)目標(biāo)確定為:1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會(huì)用描點(diǎn)法畫出反比例函數(shù)的圖象;掌握圖象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。2.在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。3.通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與與勇于探索的精神。三、教學(xué)重點(diǎn)難點(diǎn)分析本堂課的重點(diǎn)是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);難點(diǎn)則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。為了突出重點(diǎn)、突破難點(diǎn)

11、。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。四、教學(xué)方法鑒于教材特點(diǎn)及初二學(xué)生的年齡特點(diǎn)、心理特征與認(rèn)知水平,設(shè)想采用問題教學(xué)法與對比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“探究討論交流總結(jié)” 的學(xué)習(xí)活動(dòng)過程,同時(shí)在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)

12、生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力。五、學(xué)法指導(dǎo)本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動(dòng)手,多觀察,從而可以幫助學(xué)生形成分析、對比、歸納的思想方法。在對比與討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識(shí)去主動(dòng)獲取新知識(shí)的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動(dòng)參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。六、教學(xué)過程(一) 復(fù)習(xí)引入反函數(shù)解析式練習(xí)1:寫出下列各題的關(guān)系式:(1) 正方形的周長C與它的一邊的長a之間的關(guān)系(2) 運(yùn)動(dòng)會(huì)的田徑比賽中,運(yùn)動(dòng)員小王的平均速度是8米/秒,他所跑過的路程s與所用時(shí)間t之間的關(guān)系(

13、3) 矩形的面積為10時(shí),它的長x與寬y之間的關(guān)系(4) 王師傅要生產(chǎn)100個(gè)零件,他的工作效率x與工作時(shí)間t之間的關(guān)系問題1:請大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運(yùn)用對比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。問題2:那么請大家再仔細(xì)觀察一下,其余兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)嗎? 通過問題2來引出反比例函數(shù)的解析式,請學(xué)生對比正比例函數(shù)的定義來給出反比例函數(shù)的定義,這不僅有助于對舊知識(shí)的復(fù)習(xí)與鞏固,同時(shí)還可以培養(yǎng)學(xué)生的對比與探究能力。例題1:已知變量y與x成反比例,且當(dāng)x=2時(shí),y=9(1) 寫出y與x之間的函數(shù)解析式(2) 當(dāng)x

14、=3.5時(shí),求y的值(3) 當(dāng)y=5時(shí),求x的值通過對例1的學(xué)習(xí)使學(xué)生掌握如何根據(jù)已知條件來求出反比例函數(shù)的解析式。在解題過程中,引導(dǎo)學(xué)生運(yùn)用在求正比例函數(shù)的解析式時(shí)用到的“待定系數(shù)法”,先設(shè)反比例函數(shù)為,再把相應(yīng)的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。課堂練習(xí):已知x與y成反比例,根據(jù)以下條件,求出y與x之間的函數(shù)關(guān)系式(1)x=2,y=3 (2)x=,y=通過此題,對學(xué)生掌握如何根據(jù)已知條件去求反比例函數(shù)的解析式的學(xué)習(xí)情況做一個(gè)簡單的反饋。 (二)探究學(xué)習(xí)1函數(shù)圖象的畫法問題3:如何畫出正比例函數(shù)的圖象?通過問題3來復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點(diǎn)、連線三個(gè)步驟,

15、為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?在教學(xué)過程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的的畫法。設(shè)想的教學(xué)設(shè)計(jì)是:(1) 引導(dǎo)學(xué)生運(yùn)用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點(diǎn)、連線的方法畫出函數(shù)與的圖象;(2) 教師邊巡視,邊指導(dǎo),用實(shí)物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯(cuò)誤,與學(xué)生一起找出錯(cuò)誤的地方,分析原因;(3) 隨后教師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個(gè)分支)。初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會(huì)在下面幾個(gè)環(huán)節(jié)中出錯(cuò):(1) 在“列表”這

16、一環(huán)節(jié)在取點(diǎn)時(shí)學(xué)生可能會(huì)取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點(diǎn)時(shí)的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時(shí),自變量x的取值可以選取絕對值相等而符號相反的數(shù),相應(yīng)的就得到絕對相等而符號相反的對應(yīng)的函數(shù)值,這樣可以簡化計(jì)算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點(diǎn)。(2) 在“連線”這一環(huán)節(jié)學(xué)生畫的點(diǎn)與點(diǎn)之間連線可能會(huì)有端點(diǎn),未能用光滑的線條連接。因而在這里要特別要強(qiáng)調(diào)在將所選取的點(diǎn)連結(jié)時(shí),應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值與對應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多

17、的“點(diǎn)”,畫出曲線。從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象。(3) 圖象與x軸或y軸相交 在這里我認(rèn)為可以埋下一個(gè)伏筆,給學(xué)生留下一個(gè)懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)。需要說明的是:利用多媒體課件學(xué)習(xí)能吸引學(xué)生的注意力,引起學(xué)生進(jìn)一步學(xué)習(xí)的興趣。不過,盡管多媒體的演示既快又準(zhǔn)確,我認(rèn)為在學(xué)生第一次學(xué)畫反比例函數(shù)圖象的過程中,教師還是應(yīng)該在黑板上認(rèn)真示范畫出圖象的每一個(gè)步驟,畢竟多媒體還是不能替代我們平時(shí)教師在黑板上板書。鞏固練習(xí):畫出函數(shù)與的圖象通過鞏固練習(xí),讓學(xué)生再次動(dòng)手畫出函數(shù)圖象,改正在初次畫圖象時(shí)出現(xiàn)在一些問題。教師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗(yàn)證學(xué)生畫出的函數(shù)圖象的準(zhǔn)確性。(三

18、) 探究學(xué)習(xí)2函數(shù)圖象性質(zhì) 1、圖象的分布情況問題5:請大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?提出問題5主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的分布情況打下基礎(chǔ)。問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對比與探究。學(xué)生通過觀察及對比

19、,對反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。2、 圖象的變化情況問題7:正比例函數(shù)圖象的變化情況是怎么樣的呢?提出問題7主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的變化情況打下基礎(chǔ)。問題8:那反比例函數(shù)的圖象,是否也具有這樣的性質(zhì)呢?在這一環(huán)節(jié)的教學(xué)設(shè)計(jì)是:(1)回顧反比例函數(shù)與的圖象,通過實(shí)際觀察;(2)根據(jù)解析式對x進(jìn)行取值,比較x在取不同值時(shí)函數(shù)值的變化情況;(3)電腦演示及學(xué)生小組討論,請學(xué)生給出結(jié)論。即這個(gè)問題必須

20、分成兩種情況討論即當(dāng)k>0時(shí),自變量x逐漸增大時(shí),y的值則隨著逐漸減??;當(dāng)k<0時(shí),自變量x逐漸增大時(shí),y的值也隨著逐漸增大。(4)對于學(xué)生做出的結(jié)論,教師應(yīng)該要給予肯定,同時(shí)可以提出:有沒有同學(xué)需要補(bǔ)充的呢?若沒有,則可以舉例:當(dāng)k>0,分別比較在第三象限x-2,第一象限x2時(shí)的y的值的大小,則以上性質(zhì)是否依然成立?學(xué)生的回答應(yīng)該是:不成立。這時(shí)教師再請學(xué)生做小結(jié):必須限定在每一個(gè)象限內(nèi),才有以上性質(zhì)成立。問題9:當(dāng)函數(shù)圖象的兩個(gè)分支無限延伸時(shí),它與x軸、y軸相交嗎?為什么?在這個(gè)環(huán)節(jié)中,可以結(jié)合剛才學(xué)生所畫的錯(cuò)誤圖象,引導(dǎo)學(xué)生可以通過代數(shù)的方法分析反比例函數(shù)的解析式,由分

21、母不能為零,得x不能為零。由k0,得y必不為零,從而驗(yàn)證了反比例函數(shù)的圖象。當(dāng)兩個(gè)分支無限延伸時(shí),可以無限地逼近x軸、y軸,但永遠(yuǎn)不會(huì)與兩軸相交。隨即強(qiáng)調(diào)畫圖時(shí)要注意準(zhǔn)確性。(四) 備用思考題1、 反比例函數(shù)的圖象在第一、三象限,求a的取值范圍(1) 當(dāng)m為何值時(shí),y是x的正比例函數(shù)(2) 當(dāng)m為何值時(shí),y是x的反比例函數(shù)(五) 小結(jié):1、 通過列表的形式,引導(dǎo)學(xué)生小結(jié)反比例函數(shù)的性質(zhì)名稱解析式圖像圖象分布函數(shù)變化情況k>0k<0k>0k<0正比例函數(shù)y=kx(k0)是一條經(jīng)過原點(diǎn)與(1,k)的直線一、三象限二、四象限y隨x的增大而增大y隨x的增大而減小反比例函數(shù)雙曲線

22、一、三象限二、四象限y隨x的增大而減小y隨x的增大而增大2、 請學(xué)生小結(jié)一下我們在畫圖象的過程中需要大家注意的地方(1) 在列表過程中,x的值不能取0;取值可以由原點(diǎn)向兩側(cè)取相反數(shù);可以適當(dāng)?shù)亩嗳∫恍c(diǎn),方便連線(2) 反比例函數(shù)圖象是光滑曲線(3) 函數(shù)圖象只能是無限逼近y軸與x軸,永遠(yuǎn)不會(huì)與兩軸相交(六) 作業(yè)基礎(chǔ)題:A冊習(xí)題21.5 提高題:同步72頁第14,15,16題18.1探索勾股定理第一課時(shí)說課稿一、 教材分析(一)教材地位這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在

23、數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識(shí)與理解。(二)教學(xué)目標(biāo) 知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題.過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合與從特殊到一般的思想.情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索與創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。教學(xué)難點(diǎn):用面積法

24、(拼圖法)發(fā)現(xiàn)勾股定理。突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.二、教法與學(xué)法分析:學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想與推理的能力他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法與割補(bǔ)思想來解決問題的意識(shí)與能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng)教法分析:結(jié)合七年級學(xué)生與本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境-建立模型-解釋應(yīng)用-拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)

25、的過程。學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.三、 教學(xué)過程設(shè)計(jì)1.創(chuàng)設(shè)情境,提出問題 2.實(shí)驗(yàn)操作,模型構(gòu)建 3.回歸生活,應(yīng)用新知 4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)(一)創(chuàng)設(shè)情境提出問題(1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 2002年國際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值. (2) 某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火? 設(shè)

26、計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也表達(dá)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).二、實(shí)驗(yàn)操作模型構(gòu)建1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))問題一:對于等腰直角三角形,正方形、的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.問題二:對于一般的直角三角形,正方形、的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理

27、.設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊 一般的認(rèn)知規(guī)律.三.回歸生活應(yīng)用新知讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣與信心.四、知識(shí)拓展鞏固深化 基礎(chǔ)題,情境題,探索題.設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?設(shè)計(jì)意圖:這道題立足于雙基通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維情境

28、題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長與46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也表達(dá)了數(shù)學(xué)源于生活,并用于生活。 探索題: 做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型與學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力. 五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?作業(yè):1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.板書設(shè)計(jì) 探索勾股定理如果直角三角

29、形兩直角邊分別為a,b,斜邊為c,那么設(shè)計(jì)說明:1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)與諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法2.讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平.18.1勾股定理說課稿一、教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力與分析問題

30、的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系與比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。據(jù)此,制定教學(xué)目標(biāo)如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感與鉆研精神。二、教學(xué)重點(diǎn):勾股定理的證明與應(yīng)用。三、教學(xué)難點(diǎn):勾股定理的證明。四、教法與學(xué)法: 教法與學(xué)法是表達(dá)在整個(gè)教學(xué)過程中的,本課的教法與學(xué)法表達(dá)如下特點(diǎn):以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望與興趣,組織學(xué)生活動(dòng),

31、讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。切實(shí)表達(dá)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題與解決問題的能力。通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。五、教學(xué)程序:本節(jié)內(nèi)容的教學(xué)主要表達(dá)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律與學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:(一)創(chuàng)設(shè)情境以古引新1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?

32、教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。3、板書課題,出示學(xué)習(xí)目標(biāo)。(二)初步感知理解教材教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,表達(dá)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。(三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;(1)這兩個(gè)圖形有什么特點(diǎn)?(2)你能寫出這兩個(gè)圖形的面積嗎?(3)如何運(yùn)用勾股定理?是否還有其他形式?這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理

33、解程度,其他各組作評價(jià)與補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。(四)鞏固練習(xí)強(qiáng)化提高1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。(五)歸納總結(jié)練習(xí)反饋引導(dǎo)學(xué)生對知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。本課意在創(chuàng)設(shè)愉悅與諧的樂學(xué)氣氛,優(yōu)

34、化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、與諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神與實(shí)踐能力得到培養(yǎng)。勾股定理說課稿各位專家領(lǐng)導(dǎo),上午好:今天我說課的課題是勾股定理  一、教材分析:(一)本節(jié)內(nèi)容在全書與章節(jié)的地位這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解

35、決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力與觀察分析問題的能力;通過實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。 (二)三維教學(xué)目標(biāo):1.【知識(shí)與能力目標(biāo)】理解并掌握勾股定理的內(nèi)容與證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。 2. 【過程與方法目標(biāo)】在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合與從特殊到一般的思想方法。 3.【情感態(tài)度與價(jià)值觀】通過介紹中國古代勾股方面的成就,激

36、發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感與鉆研精神。(三)教學(xué)重點(diǎn)、難點(diǎn):【教學(xué)重點(diǎn)】勾股定理的證明與運(yùn)用  【教學(xué)難點(diǎn)】用面積法等方法證明勾股定理 【難點(diǎn)成因】對于勾股定理的得出,首先需要學(xué)生通過動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法與運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見性與耐挫折能力并不是很成熟,從而形成困難。 【突破措施】:創(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過程; 自主探索,敢于

37、猜想:充分讓自己動(dòng)手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,教師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;  張揚(yáng)個(gè)性,展示風(fēng)采:實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。二、教法與學(xué)法分析【教法分析】數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認(rèn)知

38、結(jié)構(gòu)與心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神?;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動(dòng)手操作-歸納驗(yàn)證-問題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面?!緦W(xué)法分析】新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。三、教學(xué)過程設(shè)計(jì)(一)創(chuàng)設(shè)情景多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,

39、消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?問題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師要注意引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會(huì)感到一些困難,從而教師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。(二)動(dòng)手操作課件出示課本P99圖19.2.1:觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?學(xué)生可能考慮到各種不同的思考方法,教師要給予肯定,并鼓勵(lì)學(xué)生用語

40、言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方與等于斜邊的平方,即當(dāng)C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。     緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P與Q的面積,只是求正方形R的

41、面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方與等于斜邊的平方。通過學(xué)生的動(dòng)手操作、合作交流,來獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題與解決問題的能力。     再問:當(dāng)邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有

42、一般性。    (三)歸納驗(yàn)證    【歸納】通過動(dòng)手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,使學(xué)生學(xué)會(huì)“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問題。    【驗(yàn)證】先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合與從特殊到一般的數(shù)學(xué)思想,而且這一

43、過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。    (四)問題解決     讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂。     自學(xué)課本P101例1,然后完成P102練習(xí)。    (五)課堂小結(jié)      1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。     2.教師

44、用多媒體介紹“勾股定理史話”     周髀算徑:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。     康熙數(shù)學(xué)專著勾股圖解有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。目的是對學(xué)生進(jìn)行愛國主義教育,激勵(lì)學(xué)生奮發(fā)向上。    (六)布置作業(yè)課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。       以上內(nèi)容,我僅從“說教材”,“說學(xué)情”

45、、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”與“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!18.2勾股定理的逆定理說課稿一、教材分析 :(一)、本節(jié)課在教材中的地位作用“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)與深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求

46、學(xué)生必須掌握。(二)、教學(xué)目標(biāo):根據(jù)數(shù)學(xué)課標(biāo)的要求與教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。知識(shí)技能:1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形過程與方法:1、通過對勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過程2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用3、通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。情感態(tài)度:1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感

47、受定理與逆定理之間的與諧及辯證統(tǒng)一的關(guān)系2、在探究勾股定理的逆定理的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)與探究精神 (三)、學(xué)情分析: 盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)與關(guān)鍵。重點(diǎn): 勾股定理逆定理的應(yīng)用 難點(diǎn): 勾股定理逆定理的證明關(guān)鍵: 輔助線的添法探索二、教學(xué)過程 :本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)

48、手操作的基礎(chǔ)上與合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。(二)、創(chuàng)設(shè)問題情境一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同

49、時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性與參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相

50、等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作觀察猜測探索論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣與學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。在同學(xué)們完成證明之后,可讓他們對

51、照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。(四)、組織變式訓(xùn)練本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果與利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對性的

52、個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維與隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。(五)、歸納小結(jié),納入知識(shí)體系本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)與技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。(六)、作業(yè)布置由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。B

53、組題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練與培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。三、說教法、學(xué)法與教學(xué)手段為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神與培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡與心理特征以及學(xué)生的認(rèn)知規(guī)律與認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力與創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對所學(xué)知識(shí)的

54、理解與掌握;有利于突破難點(diǎn)與突出重點(diǎn)。此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)與感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)??傊竟?jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。19.1平行四邊形的說課稿一、 說教材:這節(jié)課主要是通過測量操作活動(dòng)認(rèn)識(shí)平行四邊形,了解平行四邊形對邊平行且相等,對角相等,并掌握平行四邊形底與高的概念,初步會(huì)畫出平行四邊形底上的高。說教法:

55、新教材的引入方法與以往的不同,是采用兩條等寬色帶進(jìn)行交疊后產(chǎn)生的四邊形來引入平行四邊形的。首先突出的是平行四邊形“面”的形象,然后再到“邊”(面的邊緣)。 教學(xué)分兩兩個(gè)環(huán)節(jié)。第一步是認(rèn)識(shí)平行四邊形。讓學(xué)生觀察兩條互相平行的透明色帶交疊出的四邊形,進(jìn)而觀察這些四邊形的特點(diǎn)。學(xué)生通過操作、比較、思考后發(fā)現(xiàn):這些四邊形的兩組對邊分別平行,然后引導(dǎo)學(xué)生小結(jié)平行四邊形的定義,并給出數(shù)學(xué)記號。讓學(xué)生找生活中的平行四邊形的例子,一方面可以豐富對平行四邊形的表象,另一方面加深學(xué)生“對兩組對邊分別平行”的認(rèn)識(shí)。第二步是認(rèn)識(shí)平行四邊形的底與高。平行四邊形的底與高是相對的,而非絕對的。平行四邊形的任何一條邊都可以為

56、底邊,那么從底邊的對邊上的一點(diǎn)出發(fā)做底邊的垂線,該點(diǎn)與垂足之間的線段就是該底邊上的高。然而“高”的概念對學(xué)生來說不容易建立,以為學(xué)生在生活經(jīng)驗(yàn)中的高,往往是身高、樹高、塔高等,指的是直立于地面上的對象的高度,隱含著垂直的定義。因此教材中,我從垂線這一概念引入,再通過垂線段建立起高的概念,同時(shí)進(jìn)行操作觀察,這些高的位置與關(guān)系。從中得出:同一底邊上可以畫出無數(shù)條高,這些高的長度都相等,但在一般情況下,我們只要作一條高就可以了。并在此基礎(chǔ)上進(jìn)行拓展,如形外高的操作,或者底不是水平方向的怎樣操作高等,從而拓寬了學(xué)生對平面圖形中“高”的認(rèn)識(shí)。19.1平行四邊形 知識(shí)與能力目標(biāo):1、通過操作活動(dòng)認(rèn)識(shí)平行四

57、邊形。 2、掌握平行四邊形底與高的概念,并初步會(huì)畫出平行四邊形底上對應(yīng)的高。過程與方法 情感目標(biāo):讓學(xué)生享受學(xué)習(xí)的快樂,分享成功的喜悅?!窘虒W(xué)重點(diǎn)】:會(huì)畫出平行四邊形底上對應(yīng)的高?!窘虒W(xué)難點(diǎn)】:會(huì)畫出平行四邊形底上對應(yīng)的【教學(xué)過程】一、創(chuàng)設(shè)情景、激發(fā)興趣1、同學(xué)們,你們認(rèn)識(shí)了哪些幾何圖形?這些幾何圖形在我們的生活中隨處可見。它使我們的生活更加豐富多彩。 2、出示 發(fā)現(xiàn)什么? -出現(xiàn)了一個(gè)新的四邊形這個(gè)四邊形有什么特殊呢?今天我們就來研究一下。板書:平行四邊形二、新課探究1、師:根據(jù)你對平行四邊形的認(rèn)識(shí),請你選擇小棒擺一個(gè)平行四邊形。 指名學(xué)生用實(shí)投展示,組織學(xué)生評價(jià)。2、師:打開學(xué)具袋,從中找到平行四邊形。3、問:請你們將學(xué)習(xí)小組找到的平行四邊形放在一起,觀察一下,看看你能發(fā)現(xiàn)什么?提出要求:四人一組,充分利用學(xué)具,開動(dòng)腦筋,想辦法,共同探討。 小組匯報(bào),集體交流。 歸納概括平行四邊形的特征。問:我們通過觀察、動(dòng)手操作,用自己的方法發(fā)現(xiàn)了平行四邊形的特征,那什么是平行四邊形呢?你能用自己的話說一說嗎? 小結(jié):兩組對邊分別平行的四邊形叫做平行四邊形。4、出示圖片圖上的物體都是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論