其他衍生金融工具_(dá)第1頁(yè)
其他衍生金融工具_(dá)第2頁(yè)
其他衍生金融工具_(dá)第3頁(yè)
其他衍生金融工具_(dá)第4頁(yè)
其他衍生金融工具_(dá)第5頁(yè)
已閱讀5頁(yè),還剩77頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第五章第五章 其他衍生金融工具其他衍生金融工具主要內(nèi)容主要內(nèi)容 信用衍生工具信用衍生工具 利率衍生工具利率衍生工具 能源與商品衍生工具能源與商品衍生工具2022-4-212CopyrightPei Zhang ,2014信用風(fēng)險(xiǎn)的基本概念信用風(fēng)險(xiǎn)的基本概念一、信用風(fēng)險(xiǎn)的定義一、信用風(fēng)險(xiǎn)的定義 貸款的借貸方、債券發(fā)行人及衍生產(chǎn)品貸款的借貸方、債券發(fā)行人及衍生產(chǎn)品交易對(duì)手交易對(duì)手違約違約的可能性。的可能性。核心:違約概率的估計(jì)核心:違約概率的估計(jì)2022-4-213CopyrightPei Zhang ,2014二、信用風(fēng)險(xiǎn)的度量二、信用風(fēng)險(xiǎn)的度量(一)信用評(píng)級(jí)與違約概率(一)信用評(píng)級(jí)與違約概率

2、Moodys、S&P和和Fitch等評(píng)級(jí)公司專門等評(píng)級(jí)公司專門從事信用評(píng)級(jí)業(yè)務(wù)從事信用評(píng)級(jí)業(yè)務(wù)2022-4-214CopyrightPei Zhang ,2014無(wú)條件違約概率與違約密度:無(wú)條件違約概率與違約密度:(1)無(wú)條件違約概率)無(wú)條件違約概率 站在今天(站在今天(0時(shí)點(diǎn))所看到的在某一年時(shí)點(diǎn))所看到的在某一年內(nèi)(如第三年內(nèi))的違約概率內(nèi)(如第三年內(nèi))的違約概率(2)條件違約概率()條件違約概率(違約密度、風(fēng)險(xiǎn)率違約密度、風(fēng)險(xiǎn)率) 前兩年均不違約的條件下,在第三年違前兩年均不違約的條件下,在第三年違約的概率約的概率2022-4-215CopyrightPei Zhang ,201

3、4回收率(回收率(recovery rate) 公司破產(chǎn)時(shí),公司部分資產(chǎn)被債權(quán)人變公司破產(chǎn)時(shí),公司部分資產(chǎn)被債權(quán)人變賣,所得資金最大限度地用于償還債務(wù),賣,所得資金最大限度地用于償還債務(wù),回收率是指?jìng)趧倓傔`約時(shí),其市場(chǎng)回收率是指?jìng)趧倓傔`約時(shí),其市場(chǎng)價(jià)值與債券面值的百分比。價(jià)值與債券面值的百分比。2022-4-216CopyrightPei Zhang ,2014(二)債券價(jià)格與違約概率(二)債券價(jià)格與違約概率 假設(shè):公司債券價(jià)格低于無(wú)風(fēng)險(xiǎn)債券的假設(shè):公司債券價(jià)格低于無(wú)風(fēng)險(xiǎn)債券的價(jià)格是由于公司債券的違約可能性。價(jià)格是由于公司債券的違約可能性。 一般來(lái)講:一般來(lái)講:2022-4-217Co

4、pyrightPei Zhang ,2014例:假設(shè)企業(yè)債券的期限為例:假設(shè)企業(yè)債券的期限為5年,券息為年,券息為每年每年6%(半年付息一次),債券收益(半年付息一次),債券收益率為每年率為每年7%(連續(xù)復(fù)利),與這一債(連續(xù)復(fù)利),與這一債券相似的無(wú)風(fēng)險(xiǎn)收益率為每年券相似的無(wú)風(fēng)險(xiǎn)收益率為每年5%(連(連續(xù)復(fù)利)。我們可以分別計(jì)算出企業(yè)債續(xù)復(fù)利)。我們可以分別計(jì)算出企業(yè)債券及無(wú)風(fēng)險(xiǎn)債券的價(jià)格為券及無(wú)風(fēng)險(xiǎn)債券的價(jià)格為95.34和和104.09。在今后在今后5年內(nèi),由違約造成的損失的期年內(nèi),由違約造成的損失的期望值為望值為104.09-95.34=8.75 。假定債券每。假定債券每年的違約概率為年

5、的違約概率為Q,則可計(jì)算各違約時(shí),則可計(jì)算各違約時(shí)點(diǎn)由點(diǎn)由Q表示的預(yù)期違約損失。表示的預(yù)期違約損失。2022-4-218CopyrightPei Zhang ,2014各個(gè)違約時(shí)點(diǎn)對(duì)應(yīng)的預(yù)期違約各個(gè)違約時(shí)點(diǎn)對(duì)應(yīng)的預(yù)期違約損失(本金損失(本金=100美元)美元)2022-4-219CopyrightPei Zhang ,2014(三)利用股價(jià)來(lái)估計(jì)違約概率(三)利用股價(jià)來(lái)估計(jì)違約概率 1974年,年,Merton提出了一個(gè)模型,模型提出了一個(gè)模型,模型中公司股票被當(dāng)做公司資產(chǎn)上的期權(quán)。中公司股票被當(dāng)做公司資產(chǎn)上的期權(quán)。(R. Merton “On the Pricing of Corporate

6、 Debt: The Risk Structure of Interest Rates,” Journal of Finance)2022-4-2110CopyrightPei Zhang ,2014幾種違約概率的比較幾種違約概率的比較 由債券收益率和股價(jià)計(jì)算得到的違約概由債券收益率和股價(jià)計(jì)算得到的違約概率為風(fēng)險(xiǎn)中性概率率為風(fēng)險(xiǎn)中性概率 由歷史數(shù)據(jù)所隱含的概率為現(xiàn)實(shí)世界的由歷史數(shù)據(jù)所隱含的概率為現(xiàn)實(shí)世界的違約概率(也成為真實(shí)概率)違約概率(也成為真實(shí)概率)2022-4-2111CopyrightPei Zhang ,2014(四)違約相關(guān)性(四)違約相關(guān)性 兩家公司公式違約的傾向(信用蔓延兩家

7、公司公式違約的傾向(信用蔓延效應(yīng))效應(yīng))1、簡(jiǎn)化模型、簡(jiǎn)化模型2、結(jié)構(gòu)模型、結(jié)構(gòu)模型2022-4-2112CopyrightPei Zhang ,2014(五)信用(五)信用VaR(損失分布)(損失分布)例如:例如: 1年內(nèi)年內(nèi)99.9%的把握認(rèn)為信用損失不會(huì)的把握認(rèn)為信用損失不會(huì)超過(guò)的水平超過(guò)的水平2022-4-2113CopyrightPei Zhang ,2014三、信用風(fēng)險(xiǎn)的緩釋技術(shù)三、信用風(fēng)險(xiǎn)的緩釋技術(shù) 凈額結(jié)算(如果交易的一方在與某一交凈額結(jié)算(如果交易的一方在與某一交易對(duì)手的一份合約中違約,那么這一方易對(duì)手的一份合約中違約,那么這一方必須在與同一對(duì)手的所有合約中違約)。必須在與同

8、一對(duì)手的所有合約中違約)。 抵押品抵押品 降級(jí)觸發(fā)(當(dāng)交易對(duì)手的信用評(píng)級(jí)低于降級(jí)觸發(fā)(當(dāng)交易對(duì)手的信用評(píng)級(jí)低于一定水平時(shí),金融機(jī)構(gòu)有權(quán)力將衍生產(chǎn)一定水平時(shí),金融機(jī)構(gòu)有權(quán)力將衍生產(chǎn)品以市場(chǎng)價(jià)格平倉(cāng))品以市場(chǎng)價(jià)格平倉(cāng))。2022-4-2114CopyrightPei Zhang ,2014第一節(jié)第一節(jié) 信用衍生工具信用衍生工具一、信用衍生產(chǎn)品發(fā)展歷史一、信用衍生產(chǎn)品發(fā)展歷史 產(chǎn)生于產(chǎn)生于20世紀(jì)世紀(jì)90年代中期年代中期 規(guī)模發(fā)展迅猛,規(guī)模發(fā)展迅猛,8000億美元(億美元(2000年)年)32萬(wàn)億美元(萬(wàn)億美元(2009) 2007年爆發(fā)的美國(guó)次貸危機(jī)中,信用衍年爆發(fā)的美國(guó)次貸危機(jī)中,信用衍生產(chǎn)品遭

9、到了詬病生產(chǎn)品遭到了詬病2022-4-2115CopyrightPei Zhang ,2014二、信用衍生產(chǎn)品的基本概念二、信用衍生產(chǎn)品的基本概念(一)定義(一)定義 信用衍生產(chǎn)品信用衍生產(chǎn)品是指收益與某個(gè)(或多個(gè))是指收益與某個(gè)(或多個(gè))公司或國(guó)家的信用有關(guān)的合約。公司或國(guó)家的信用有關(guān)的合約。(二)分類(二)分類1、單一公司產(chǎn)品、單一公司產(chǎn)品 收益與某家公司或某個(gè)國(guó)家的信用有關(guān)收益與某家公司或某個(gè)國(guó)家的信用有關(guān)(例如:信用違約互換(例如:信用違約互換 CDS)2、多家公司產(chǎn)品、多家公司產(chǎn)品 收益與多家公司或多個(gè)國(guó)家的信用有關(guān)收益與多家公司或多個(gè)國(guó)家的信用有關(guān)(例如:債務(wù)抵押債券(例如:債務(wù)抵

10、押債券 CDO)2022-4-2116CopyrightPei Zhang ,2014三、三、 信用違約互換信用違約互換(credit default swap)(一)信用違約互換的定義(一)信用違約互換的定義 參考實(shí)體參考實(shí)體 信用事件:參考實(shí)體的違約信用事件:參考實(shí)體的違約 買方向賣方定期付款后,買方在信用事買方向賣方定期付款后,買方在信用事件發(fā)生時(shí)有權(quán)利將違約公司債券以債券件發(fā)生時(shí)有權(quán)利將違約公司債券以債券面值(信用違約互換的面值)的價(jià)格賣面值(信用違約互換的面值)的價(jià)格賣給信用違約互換的賣出方。給信用違約互換的賣出方。2022-4-2117CopyrightPei Zhang ,201

11、4 假設(shè)兩家公司在假設(shè)兩家公司在2007年年3月月1日進(jìn)入了一個(gè)信日進(jìn)入了一個(gè)信用違約互換,信用違約互換的面值為用違約互換,信用違約互換的面值為1億美元,億美元,買入方付費(fèi)為每年買入方付費(fèi)為每年90個(gè)基點(diǎn)(付款時(shí)間為個(gè)基點(diǎn)(付款時(shí)間為2008、2009、2010、2011、2012年年3月月1日)。日)。如果參考實(shí)體沒(méi)有違約,信用違約互換的買如果參考實(shí)體沒(méi)有違約,信用違約互換的買方不會(huì)得到任何收益。當(dāng)有信用事件發(fā)生時(shí),方不會(huì)得到任何收益。當(dāng)有信用事件發(fā)生時(shí),在實(shí)物交割的條件下,賣方以在實(shí)物交割的條件下,賣方以1億的價(jià)格買入億的價(jià)格買入面值為面值為1億的債券,如果為現(xiàn)金交割,賣方必億的債券,如果

12、為現(xiàn)金交割,賣方必須向買方支付債券跌價(jià)的部分。須向買方支付債券跌價(jià)的部分。2022-4-2118CopyrightPei Zhang ,2014 信用事件一旦發(fā)生,買入方的定期付款信用事件一旦發(fā)生,買入方的定期付款會(huì)馬上終止,但買入方必須要賣出方支會(huì)馬上終止,但買入方必須要賣出方支付最后的應(yīng)計(jì)付款。付最后的應(yīng)計(jì)付款。 買入方所付出占本金的百分比被稱為買入方所付出占本金的百分比被稱為信信用違約互換溢價(jià)(用違約互換溢價(jià)(CDS spread)。 市場(chǎng)上大銀行是信用違約互換的做市商。市場(chǎng)上大銀行是信用違約互換的做市商。 許多公司和國(guó)家已經(jīng)成為許多公司和國(guó)家已經(jīng)成為CDS合約的參合約的參考實(shí)體??紝?shí)體

13、。2022-4-2119CopyrightPei Zhang ,2014(二)信用違約互換的定價(jià)(信用違約互(二)信用違約互換的定價(jià)(信用違約互換溢價(jià)水平的確定)換溢價(jià)水平的確定) 假設(shè)參考實(shí)體一年的違約概率為假設(shè)參考實(shí)體一年的違約概率為2%,則:則:2022-4-2120CopyrightPei Zhang ,2014 進(jìn)一步假設(shè)違約發(fā)生在年中,信用違約進(jìn)一步假設(shè)違約發(fā)生在年中,信用違約互換的買方付款的時(shí)間為每年年終,無(wú)互換的買方付款的時(shí)間為每年年終,無(wú)風(fēng)險(xiǎn)利率(風(fēng)險(xiǎn)利率(LIBOR)為每年)為每年5%(連續(xù)(連續(xù)復(fù)利),回收率為復(fù)利),回收率為40%,(1)預(yù)期付款貼現(xiàn)值為:)預(yù)期付款貼現(xiàn)

14、值為:2022-4-2121CopyrightPei Zhang ,2014(2)預(yù)期收益的貼現(xiàn)值為:)預(yù)期收益的貼現(xiàn)值為:2022-4-2122CopyrightPei Zhang ,2014(3 3)應(yīng)計(jì)付款的貼現(xiàn)值為:)應(yīng)計(jì)付款的貼現(xiàn)值為:2022-4-2123CopyrightPei Zhang ,2014 預(yù)期付款貼現(xiàn)值預(yù)期付款貼現(xiàn)值+應(yīng)計(jì)付款貼現(xiàn)值應(yīng)計(jì)付款貼現(xiàn)值=預(yù)期預(yù)期收益貼現(xiàn)值收益貼現(xiàn)值4.0704s+0.0426s=0.0511于是:于是:S=0.0124信用互換溢價(jià)為每年信用互換溢價(jià)為每年124個(gè)基點(diǎn)個(gè)基點(diǎn) 還應(yīng)進(jìn)一步考慮:還應(yīng)進(jìn)一步考慮:(1)買方付款頻率的變化)買方付款

15、頻率的變化(2)違約發(fā)生的頻率)違約發(fā)生的頻率2022-4-2124CopyrightPei Zhang ,2014信用指數(shù)信用指數(shù) 用來(lái)描述信用衍生品市場(chǎng)上信用違約互用來(lái)描述信用衍生品市場(chǎng)上信用違約互換的溢價(jià)換的溢價(jià)(1)CDXNAIG 北美北美125家投資級(jí)公司家投資級(jí)公司組成的組合組成的組合(2)iTraxx 歐洲歐洲125家投資級(jí)公司組成家投資級(jí)公司組成的組合的組合作用:方便購(gòu)買和出售信用違約互換的組作用:方便購(gòu)買和出售信用違約互換的組合合2022-4-2125CopyrightPei Zhang ,2014例如:做市商對(duì)例如:做市商對(duì)CDXNAIG5年指數(shù)報(bào)出年指數(shù)報(bào)出的買入價(jià)為的買

16、入價(jià)為65個(gè)基點(diǎn),賣出價(jià)為個(gè)基點(diǎn),賣出價(jià)為66個(gè)基個(gè)基點(diǎn)。這表示一個(gè)交易員可以按每家公司點(diǎn)。這表示一個(gè)交易員可以按每家公司都為都為65的基點(diǎn)的價(jià)格買入的基點(diǎn)的價(jià)格買入125家公司的家公司的信用違約互換。每家公司的面值為信用違約互換。每家公司的面值為800000美元,支付的總費(fèi)用為美元,支付的總費(fèi)用為660000美美元。當(dāng)某個(gè)公司違約時(shí),買方會(huì)得到信元。當(dāng)某個(gè)公司違約時(shí),買方會(huì)得到信用違約互換的收益,而且付費(fèi)每年減少用違約互換的收益,而且付費(fèi)每年減少660000/125=5280美元。美元。2022-4-2126CopyrightPei Zhang ,2014四、信用違約互換的衍生產(chǎn)品四、信用違

17、約互換的衍生產(chǎn)品(一)信用違約互換遠(yuǎn)期合約及期權(quán)(一)信用違約互換遠(yuǎn)期合約及期權(quán) 信用違約互換的遠(yuǎn)期合約是指一個(gè)在將信用違約互換的遠(yuǎn)期合約是指一個(gè)在將來(lái)某時(shí)間來(lái)某時(shí)間T進(jìn)入買入或賣出某參考實(shí)體進(jìn)入買入或賣出某參考實(shí)體的信用違約互換義務(wù)。如果在時(shí)間的信用違約互換義務(wù)。如果在時(shí)間T之之前參考實(shí)體違約,這種義務(wù)就自行消失。前參考實(shí)體違約,這種義務(wù)就自行消失。 一個(gè)信用違約互換期權(quán)是在將來(lái)某時(shí)刻一個(gè)信用違約互換期權(quán)是在將來(lái)某時(shí)刻T可以買入或賣出某參考實(shí)體信用保護(hù)可以買入或賣出某參考實(shí)體信用保護(hù)的一種權(quán)利。的一種權(quán)利。(二)籃筐式信用違約互換(二)籃筐式信用違約互換 一定數(shù)量的參考實(shí)體作為標(biāo)的一定數(shù)量的

18、參考實(shí)體作為標(biāo)的2022-4-2127CopyrightPei Zhang ,2014五、總收益互換五、總收益互換 總收益互換是信用衍生產(chǎn)品的一種,它總收益互換是信用衍生產(chǎn)品的一種,它涉及某種債券(或任何資產(chǎn)的組合)的涉及某種債券(或任何資產(chǎn)的組合)的收益與收益與LIBOR加上某差價(jià)之間的互換。加上某差價(jià)之間的互換。資產(chǎn)的收益包括券息、利息以及在互換資產(chǎn)的收益包括券息、利息以及在互換期限內(nèi)資產(chǎn)的盈虧。期限內(nèi)資產(chǎn)的盈虧。2022-4-2128CopyrightPei Zhang ,2014例如:一個(gè)例如:一個(gè)5年期總收益互換的面值為年期總收益互換的面值為1億億美元,互換的一方將某企業(yè)債券的收益美

19、元,互換的一方將某企業(yè)債券的收益同同LIBOR加上加上25個(gè)基點(diǎn)進(jìn)行交換,在券個(gè)基點(diǎn)進(jìn)行交換,在券息付出的日期,收益付出方將息付出的日期,收益付出方將1億美元億美元債券所收入的券息付給收益收入方,同債券所收入的券息付給收益收入方,同時(shí)收入方將面值時(shí)收入方將面值1億美元在利率為億美元在利率為L(zhǎng)IBOR+25個(gè)基點(diǎn)時(shí)所得利息付給付出個(gè)基點(diǎn)時(shí)所得利息付給付出方。如果債券違約,總收益互換合約將方。如果債券違約,總收益互換合約將終止,收入方必須向付出方支付終止,收入方必須向付出方支付1億美億美元與違約債券市場(chǎng)價(jià)格的差額。元與違約債券市場(chǎng)價(jià)格的差額。2022-4-2129CopyrightPei Zhan

20、g ,2014總收益互換總收益互換作用:在融資時(shí)降低信用風(fēng)險(xiǎn)作用:在融資時(shí)降低信用風(fēng)險(xiǎn)2022-4-2130CopyrightPei Zhang ,2014六、資產(chǎn)擔(dān)保債券六、資產(chǎn)擔(dān)保債券(一)定義(一)定義 資產(chǎn)擔(dān)保證券(資產(chǎn)擔(dān)保證券(ABS)是指由貸款組合、)是指由貸款組合、證券、信用卡應(yīng)收款、住房抵押貸款、證券、信用卡應(yīng)收款、住房抵押貸款、汽車貸款等金融資產(chǎn)派生出的債券產(chǎn)品。汽車貸款等金融資產(chǎn)派生出的債券產(chǎn)品。 特殊目的機(jī)構(gòu)(特殊目的機(jī)構(gòu)(SPV)以資產(chǎn)的現(xiàn)金流)以資產(chǎn)的現(xiàn)金流為支持發(fā)行債券。為支持發(fā)行債券。2022-4-2131CopyrightPei Zhang ,2014ABS的結(jié)

21、構(gòu)的結(jié)構(gòu)2022-4-2132CopyrightPei Zhang ,2014中間份額的再次打包中間份額的再次打包2022-4-2133CopyrightPei Zhang ,2014(二)債務(wù)抵押債券(二)債務(wù)抵押債券 債務(wù)抵押債券(債務(wù)抵押債券(CDO)是一種資產(chǎn)擔(dān)保)是一種資產(chǎn)擔(dān)保證券。發(fā)行者取得證券組合,然后賣給證券。發(fā)行者取得證券組合,然后賣給SPV,SPV隨后將證券的收入傳遞給一隨后將證券的收入傳遞給一系列不同的份額。債券組合的收入首先系列不同的份額。債券組合的收入首先用于支付最高級(jí)別的份額。用于支付最高級(jí)別的份額。 例如,例如,CDO結(jié)構(gòu)可將面值為結(jié)構(gòu)可將面值為1億美元的億美元的

22、A級(jí)證券轉(zhuǎn)換為面值為級(jí)證券轉(zhuǎn)換為面值為7500萬(wàn)美元萬(wàn)美元AAA的證券,的證券,2000萬(wàn)美元萬(wàn)美元BBB的證券和的證券和500萬(wàn)美元無(wú)級(jí)別證券的組合。萬(wàn)美元無(wú)級(jí)別證券的組合。2022-4-2134CopyrightPei Zhang ,2014合成合成CDO(synthetic CDO) CDO的發(fā)行者生成一個(gè)由信用違約互換的發(fā)行者生成一個(gè)由信用違約互換的空頭頭寸(等價(jià)于證券的多頭頭寸)的空頭頭寸(等價(jià)于證券的多頭頭寸)所組成的交易組合,交易組合的信用風(fēng)所組成的交易組合,交易組合的信用風(fēng)險(xiǎn)可以轉(zhuǎn)移到相應(yīng)的份額中去。(即將險(xiǎn)可以轉(zhuǎn)移到相應(yīng)的份額中去。(即將信用違約互換的違約損失分配到份額之信用

23、違約互換的違約損失分配到份額之中)中) 合成合成CDO的定價(jià)的定價(jià)2022-4-2135CopyrightPei Zhang ,2014第二節(jié)第二節(jié) 利率衍生工具利率衍生工具 20世紀(jì)八九十年代,利率衍生產(chǎn)品發(fā)展世紀(jì)八九十年代,利率衍生產(chǎn)品發(fā)展的非常迅速(單位:十億美元)的非常迅速(單位:十億美元) 利率衍生產(chǎn)品市場(chǎng)是全球最大的場(chǎng)外衍利率衍生產(chǎn)品市場(chǎng)是全球最大的場(chǎng)外衍生產(chǎn)品市場(chǎng)生產(chǎn)品市場(chǎng)2022-4-2137CopyrightPei Zhang ,2014單獨(dú)討論利率衍生品的原因單獨(dú)討論利率衍生品的原因 利率的變化過(guò)程比較復(fù)雜利率的變化過(guò)程比較復(fù)雜 利率具有期限結(jié)構(gòu)利率具有期限結(jié)構(gòu) 利率的波動(dòng)

24、率比較復(fù)雜利率的波動(dòng)率比較復(fù)雜 利率既是標(biāo)的物,又影響貼現(xiàn)因子利率既是標(biāo)的物,又影響貼現(xiàn)因子2022-4-2138CopyrightPei Zhang ,2014主要內(nèi)容主要內(nèi)容主要討論利率期權(quán)的定價(jià)主要討論利率期權(quán)的定價(jià) 標(biāo)準(zhǔn)市場(chǎng)模型的定價(jià)標(biāo)準(zhǔn)市場(chǎng)模型的定價(jià)(用標(biāo)準(zhǔn)期權(quán)定價(jià)模型)(用標(biāo)準(zhǔn)期權(quán)定價(jià)模型) 短期利率模型的定價(jià)短期利率模型的定價(jià)(描述各種利率隨時(shí)間演變的方式)(描述各種利率隨時(shí)間演變的方式) HJM、LMM模型模型(多因素、考慮波動(dòng)率結(jié)構(gòu))(多因素、考慮波動(dòng)率結(jié)構(gòu))2022-4-2139CopyrightPei Zhang ,2014一、標(biāo)準(zhǔn)市場(chǎng)模型一、標(biāo)準(zhǔn)市場(chǎng)模型 (一)債券期權(quán)

25、(一)債券期權(quán)1、債券期權(quán)定義、債券期權(quán)定義 在將來(lái)某確定時(shí)刻在將來(lái)某確定時(shí)刻T以某一確定價(jià)格以某一確定價(jià)格K買入或賣出某個(gè)債券的權(quán)利。買入或賣出某個(gè)債券的權(quán)利。 債券期權(quán)可以隱含在債券內(nèi),也可以是債券期權(quán)可以隱含在債券內(nèi),也可以是一般的在場(chǎng)外市場(chǎng)進(jìn)行交易。一般的在場(chǎng)外市場(chǎng)進(jìn)行交易。2022-4-2140CopyrightPei Zhang ,2014(1)隱含債券期權(quán))隱含債券期權(quán)A 可提前贖回債券(可提前贖回債券(callable bond) 含有允許發(fā)行債券的公司在將來(lái)某時(shí)刻以事含有允許發(fā)行債券的公司在將來(lái)某時(shí)刻以事先約定的價(jià)格買回債券的條款。這相當(dāng)于債先約定的價(jià)格買回債券的條款。這相當(dāng)

26、于債券的持有人向發(fā)行人賣出了一個(gè)看漲期權(quán)券的持有人向發(fā)行人賣出了一個(gè)看漲期權(quán)(執(zhí)行價(jià)格為贖回價(jià)格)。通常在債券發(fā)行(執(zhí)行價(jià)格為贖回價(jià)格)。通常在債券發(fā)行的最初幾年內(nèi)不能贖回(稱為的最初幾年內(nèi)不能贖回(稱為鎖定區(qū)間鎖定區(qū)間 lock-out period),此后的贖回價(jià)格通常是時(shí)間的),此后的贖回價(jià)格通常是時(shí)間的遞減函數(shù)。遞減函數(shù)。 例如:某例如:某10年期可贖回債券發(fā)行的最初兩年不能贖回,年期可贖回債券發(fā)行的最初兩年不能贖回,第第3年和第年和第4年以年以110美元的價(jià)格贖回,第美元的價(jià)格贖回,第5年和第年和第6年年以以107.50美元的價(jià)格贖回,第美元的價(jià)格贖回,第7年和第年和第8年以年以10

27、6美元美元的價(jià)格贖回,第的價(jià)格贖回,第9年和第年和第10年以年以103美元的價(jià)格贖回。美元的價(jià)格贖回。2022-4-2141CopyrightPei Zhang ,2014B 可提前退還債券(可提前退還債券(puttable bond) 這種債券含有允許債券持有人在將來(lái)某這種債券含有允許債券持有人在將來(lái)某一時(shí)間內(nèi)以預(yù)先約定價(jià)格提前將債券退一時(shí)間內(nèi)以預(yù)先約定價(jià)格提前將債券退還給債券發(fā)行人并收回現(xiàn)金的條款。這還給債券發(fā)行人并收回現(xiàn)金的條款。這相當(dāng)于債券持有人擁有債券的看跌期權(quán)。相當(dāng)于債券持有人擁有債券的看跌期權(quán)。C 存款、貸款存款、貸款 某金融機(jī)構(gòu)的某金融機(jī)構(gòu)的5年期定期存款可以被提年期定期存款可

28、以被提前提取而沒(méi)有任何懲罰前提取而沒(méi)有任何懲罰 貸款可以提前還清的權(quán)利貸款可以提前還清的權(quán)利 貸款許諾貸款許諾2022-4-2142CopyrightPei Zhang ,2014(2)普通歐式債券期權(quán))普通歐式債券期權(quán) 假設(shè)債券的遠(yuǎn)期價(jià)格具有常數(shù)波動(dòng)率,假設(shè)債券的遠(yuǎn)期價(jià)格具有常數(shù)波動(dòng)率,服從對(duì)數(shù)正態(tài)分布,利用服從對(duì)數(shù)正態(tài)分布,利用Black公式進(jìn)公式進(jìn)行定價(jià):行定價(jià): 債券現(xiàn)貨價(jià)格和遠(yuǎn)期價(jià)格均為現(xiàn)金價(jià)格。債券現(xiàn)貨價(jià)格和遠(yuǎn)期價(jià)格均為現(xiàn)金價(jià)格。TddTTKFddNFdKNTPpdKNdNFTPcBBBBBB12211221;2/)/ln()()(), 0()()(), 0(2022-4-2143

29、CopyrightPei Zhang ,2014例例 考慮一個(gè)考慮一個(gè)10個(gè)月期歐式看漲期權(quán),標(biāo)的證券個(gè)月期歐式看漲期權(quán),標(biāo)的證券是有效期是有效期9.75年的債券,面值為年的債券,面值為1000元。假設(shè)元。假設(shè)當(dāng)前現(xiàn)金債券價(jià)格為當(dāng)前現(xiàn)金債券價(jià)格為960元,執(zhí)行價(jià)格為元,執(zhí)行價(jià)格為1000元,元,10個(gè)月期無(wú)風(fēng)險(xiǎn)利率為每年個(gè)月期無(wú)風(fēng)險(xiǎn)利率為每年10%,在,在10個(gè)月內(nèi)該債券遠(yuǎn)期價(jià)格的波動(dòng)率為每年個(gè)月內(nèi)該債券遠(yuǎn)期價(jià)格的波動(dòng)率為每年9%。債券息票率為債券息票率為10%,每半年支付一次,預(yù)計(jì),每半年支付一次,預(yù)計(jì)在在3個(gè)月后和個(gè)月后和9個(gè)月后各支付個(gè)月后各支付50元息票。元息票。3個(gè)月個(gè)月和和9個(gè)月無(wú)

30、風(fēng)險(xiǎn)利率分別為個(gè)月無(wú)風(fēng)險(xiǎn)利率分別為9%和和9.5%,計(jì)算,計(jì)算期權(quán)的價(jià)格。期權(quán)的價(jià)格。2022-4-2144CopyrightPei Zhang ,2014關(guān)于波動(dòng)率的解釋關(guān)于波動(dòng)率的解釋 期權(quán)到期時(shí)債券價(jià)格對(duì)數(shù)的標(biāo)準(zhǔn)差期權(quán)到期時(shí)債券價(jià)格對(duì)數(shù)的標(biāo)準(zhǔn)差/ /期期權(quán)期限的平方根權(quán)期限的平方根2022-4-2145CopyrightPei Zhang ,2014(二)利率上限和下限(二)利率上限和下限1、利率上限的定義、利率上限的定義 利率上限利率上限保證浮動(dòng)利息債券中的浮動(dòng)利保證浮動(dòng)利息債券中的浮動(dòng)利率不超過(guò)某個(gè)水平,這一利率水平被稱率不超過(guò)某個(gè)水平,這一利率水平被稱為上限利率。為上限利率。 在利

31、率上限內(nèi)的每一個(gè)重置日上,如果在利率上限內(nèi)的每一個(gè)重置日上,如果LIBOR利率小于利率小于4%,在,在3個(gè)月后的上限個(gè)月后的上限收益為收益為0;如果;如果LIBOR超出超出4%,上限收,上限收益為益為L(zhǎng)IBOR超出超出4%的溢差乘以面值的溢差乘以面值1000萬(wàn)美元。萬(wàn)美元。2022-4-2146CopyrightPei Zhang ,2014例:假定面值為例:假定面值為1000萬(wàn)美元,上限期限為萬(wàn)美元,上限期限為5年,上限利率為年,上限利率為4%,如果,如果3個(gè)月后個(gè)月后LIBOR利率為利率為5%,則利率上限提供的,則利率上限提供的收益為:收益為:2500010000000)04. 005.

32、0(25. 02022-4-2147CopyrightPei Zhang ,20142、利率上限的結(jié)構(gòu)、利率上限的結(jié)構(gòu)(1)利率上限相當(dāng)于看漲利率期權(quán)的組合)利率上限相當(dāng)于看漲利率期權(quán)的組合 利率上限的收益為:利率上限的收益為:(2)利率上限是債權(quán)期權(quán)的組合)利率上限是債權(quán)期權(quán)的組合 利率上限可以被當(dāng)成一個(gè)關(guān)于零息票債利率上限可以被當(dāng)成一個(gè)關(guān)于零息票債券看跌期權(quán)的組合:券看跌期權(quán)的組合:)0 ,max(1KkkkkRRRL)0 ,max(KkkRRL2022-4-2148CopyrightPei Zhang ,20143、利率下限、利率下限 相當(dāng)于利率看跌期權(quán)的組合,也是零息相當(dāng)于利率看跌期權(quán)

33、的組合,也是零息票債券上看漲期權(quán)的組合。票債券上看漲期權(quán)的組合。)0 ,max(kKkRRL2022-4-2149CopyrightPei Zhang ,20144 4、利率上限與下限的定價(jià)、利率上限與下限的定價(jià)2022-4-2150CopyrightPei Zhang ,2014(三)歐式利率互換期權(quán)(三)歐式利率互換期權(quán)(swaption)1、定義、定義 給持有者在將來(lái)某時(shí)刻進(jìn)入一個(gè)約定的給持有者在將來(lái)某時(shí)刻進(jìn)入一個(gè)約定的利率互換的權(quán)利。利率互換的權(quán)利。例如:某企業(yè)已知在例如:某企業(yè)已知在6個(gè)月后要簽署一項(xiàng)個(gè)月后要簽署一項(xiàng)5年期的浮動(dòng)利率貸款,企業(yè)希望通過(guò)利年期的浮動(dòng)利率貸款,企業(yè)希望通過(guò)

34、利率互換將浮動(dòng)利息轉(zhuǎn)為固定利息,這樣率互換將浮動(dòng)利息轉(zhuǎn)為固定利息,這樣企業(yè)可以將貸款轉(zhuǎn)為固定利息貸款。企企業(yè)可以將貸款轉(zhuǎn)為固定利息貸款。企業(yè)可以買入一個(gè)期權(quán),給予企業(yè)進(jìn)入收業(yè)可以買入一個(gè)期權(quán),給予企業(yè)進(jìn)入收取取6個(gè)月個(gè)月LIBOR利率并同時(shí)付出固定利利率并同時(shí)付出固定利率(年率率(年率8%)的互換權(quán)力。)的互換權(quán)力。2022-4-2151CopyrightPei Zhang ,20142 2、歐式互換期權(quán)的定價(jià)、歐式互換期權(quán)的定價(jià)參考文獻(xiàn):參考文獻(xiàn): Balck, F., “The Pricing of Commodity Contracts,” Journal of Financial Ec

35、onomics, 3 (March 1976): 167-79.2022-4-2152CopyrightPei Zhang ,2014二、短期利率模型二、短期利率模型第一類模型:平衡性模型第一類模型:平衡性模型 先對(duì)經(jīng)濟(jì)變量進(jìn)行假設(shè),并推導(dǎo)出短期先對(duì)經(jīng)濟(jì)變量進(jìn)行假設(shè),并推導(dǎo)出短期利率利率r的過(guò)程,然后再得出的過(guò)程,然后再得出r對(duì)債券價(jià)格對(duì)債券價(jià)格與期權(quán)價(jià)格的影響。與期權(quán)價(jià)格的影響。第二類模型:無(wú)套利模型第二類模型:無(wú)套利模型 將利率期限結(jié)構(gòu)作為輸入變量使用。將利率期限結(jié)構(gòu)作為輸入變量使用。2022-4-2153CopyrightPei Zhang ,2014問(wèn)題背景:?jiǎn)栴}背景: 在時(shí)間在時(shí)間t

36、的短期利率的短期利率r是關(guān)于在是關(guān)于在t開(kāi)始的一開(kāi)始的一個(gè)無(wú)窮小時(shí)間區(qū)間上的利率,也被稱為個(gè)無(wú)窮小時(shí)間區(qū)間上的利率,也被稱為瞬時(shí)短期利率。瞬時(shí)短期利率。 一個(gè)在時(shí)間一個(gè)在時(shí)間T提供收益為提供收益為 的利率衍生的利率衍生產(chǎn)品在時(shí)間產(chǎn)品在時(shí)間t的價(jià)值為:的價(jià)值為:其中,其中, 為為r在時(shí)間在時(shí)間t與與T之間的平均值,之間的平均值, 表示風(fēng)險(xiǎn)中性概率下的期望值。表示風(fēng)險(xiǎn)中性概率下的期望值。TfTtTrfeE)(rE2022-4-2154CopyrightPei Zhang ,2014 定義定義P(t,T)為在時(shí)間為在時(shí)間T支付支付1美元的零息美元的零息債券在時(shí)間債券在時(shí)間t時(shí)的價(jià)格,則:時(shí)的價(jià)格,則

37、:如果如果R(t,T)為在時(shí)間為在時(shí)間t,期限為,期限為T-t,按連,按連續(xù)復(fù)利的利率,那么:續(xù)復(fù)利的利率,那么:于是,于是,所以:所以:)(),(tTreETtP)(,(),(tTTtReTtP),(ln1),(TtPtTTtR)(ln1),(tTreEtTTtR已知已知r的過(guò)程,的過(guò)程,可以定義初始可以定義初始時(shí)的零息票曲時(shí)的零息票曲線(利率期限線(利率期限結(jié)構(gòu))以及它結(jié)構(gòu))以及它按時(shí)間變動(dòng)的按時(shí)間變動(dòng)的規(guī)律。規(guī)律。2022-4-2155CopyrightPei Zhang ,2014(一)平衡性模型(一)平衡性模型1、單因子平衡性模型、單因子平衡性模型r的過(guò)程僅僅涉及一個(gè)不確定性的過(guò)程僅

38、僅涉及一個(gè)不確定性 (Rendleman和和Bartter模型)模型) (Vasicek模型)模型)(Cox, Ingersoll 和和Ross模型)模型)dzrsdtrmdr)()(rrsrrm)(;)()();()(rsrbarmrrsrbarm)();()(2022-4-2156CopyrightPei Zhang ,2014(1)Rendleman和和Bartter模型模型 (幾何布朗運(yùn)動(dòng))(幾何布朗運(yùn)動(dòng)) 利率與股票價(jià)格的重要區(qū)別在于,利率利率與股票價(jià)格的重要區(qū)別在于,利率有被有被“拉回拉回”到某個(gè)長(zhǎng)期平均水平的趨到某個(gè)長(zhǎng)期平均水平的趨勢(shì),被稱為勢(shì),被稱為“均值回歸均值回歸”(mea

39、n reversion) 均值回歸現(xiàn)象是有經(jīng)濟(jì)學(xué)原因的。均值回歸現(xiàn)象是有經(jīng)濟(jì)學(xué)原因的。rdzrdtdr2022-4-2157CopyrightPei Zhang ,2014利率的均值回歸利率的均值回歸2022-4-2158CopyrightPei Zhang ,2014(2)Vasicek模型模型T時(shí)支付時(shí)支付1美元在零息債券在時(shí)間美元在零息債券在時(shí)間t的價(jià)格的價(jià)格其中:其中:dzdtrbadr)(2022-4-2159CopyrightPei Zhang ,2014Vasicek模型下可能的期限結(jié)構(gòu):模型下可能的期限結(jié)構(gòu):2022-4-2160CopyrightPei Zhang ,2014

40、(3)Cox, Ingersoll和和Ross模型模型 Vasicek模型中短期利率模型中短期利率r可能為負(fù)。可能為負(fù)。 Cox, Ingersoll和和Ross提出了一個(gè)可以保提出了一個(gè)可以保證利率永遠(yuǎn)為正的模型。證利率永遠(yuǎn)為正的模型。 短期利率上漲時(shí),標(biāo)準(zhǔn)差也會(huì)增大短期利率上漲時(shí),標(biāo)準(zhǔn)差也會(huì)增大 Cox, Ingersoll和和Ross模型可以產(chǎn)生各種模型可以產(chǎn)生各種形狀的收益率曲線圖形形狀的收益率曲線圖形2022-4-2161CopyrightPei Zhang ,20142、兩因子平衡模型、兩因子平衡模型 r的過(guò)程僅僅涉及兩個(gè)不確定性的過(guò)程僅僅涉及兩個(gè)不確定性 Brennan和和Sch

41、wartz(1982)提出一個(gè))提出一個(gè)模型,短期利率過(guò)程回歸于長(zhǎng)期利率,模型,短期利率過(guò)程回歸于長(zhǎng)期利率,而長(zhǎng)期利率也服從一個(gè)隨機(jī)過(guò)程。而長(zhǎng)期利率也服從一個(gè)隨機(jī)過(guò)程。 Longstaff和和Schwartz(1992)推導(dǎo)出一)推導(dǎo)出一個(gè)期限模型,其中波動(dòng)率為隨機(jī)項(xiàng)。個(gè)期限模型,其中波動(dòng)率為隨機(jī)項(xiàng)。2022-4-2162CopyrightPei Zhang ,2014(二)無(wú)套利模型(二)無(wú)套利模型 將今天的利率期限結(jié)構(gòu)作為輸入值來(lái)使將今天的利率期限結(jié)構(gòu)作為輸入值來(lái)使用,做到與今天的利率期限結(jié)構(gòu)完全吻用,做到與今天的利率期限結(jié)構(gòu)完全吻合的模型。合的模型。 無(wú)套利模型中,漂移項(xiàng)與時(shí)間無(wú)套利模型

42、中,漂移項(xiàng)與時(shí)間t t有關(guān)。有關(guān)。2022-4-2163CopyrightPei Zhang ,20141、Ho-Lee模型模型 Ho-Lee(1986)首次使用兩個(gè)參數(shù)(短)首次使用兩個(gè)參數(shù)(短期利率的標(biāo)準(zhǔn)差、短期利率的風(fēng)險(xiǎn)價(jià)格)期利率的標(biāo)準(zhǔn)差、短期利率的風(fēng)險(xiǎn)價(jià)格)的二叉樹(shù)形式來(lái)描述模型??梢宰C明,的二叉樹(shù)形式來(lái)描述模型??梢宰C明,Ho-Lee模型在連續(xù)時(shí)間的極限為:模型在連續(xù)時(shí)間的極限為:短期利率的短期利率的瞬時(shí)標(biāo)準(zhǔn)差瞬時(shí)標(biāo)準(zhǔn)差為時(shí)間為時(shí)間t的函數(shù),其選的函數(shù),其選取確保模型與初始期取確保模型與初始期限結(jié)構(gòu)相吻合限結(jié)構(gòu)相吻合2022-4-2164CopyrightPei Zhang ,20

43、14 用解析式來(lái)表達(dá)變量用解析式來(lái)表達(dá)變量 ,其公式為:,其公式為: 遠(yuǎn)期利率曲線的斜率確定了短期利率在遠(yuǎn)期利率曲線的斜率確定了短期利率在將來(lái)任何時(shí)刻的平均移動(dòng)方向,模型在將來(lái)任何時(shí)刻的平均移動(dòng)方向,模型在這個(gè)斜率上附加了一個(gè)按正態(tài)分布的隨這個(gè)斜率上附加了一個(gè)按正態(tài)分布的隨機(jī)項(xiàng)。機(jī)項(xiàng)。2022-4-2165CopyrightPei Zhang ,20142、Hull-White(單因子)模型(單因子)模型 Hull-White(1990)將)將Vasicek模型推廣模型推廣到與初始期限結(jié)構(gòu)相吻合的情形(假設(shè)到與初始期限結(jié)構(gòu)相吻合的情形(假設(shè)均值回歸速度為均值回歸速度為a):): 為了匹配初始期

44、限結(jié)構(gòu):為了匹配初始期限結(jié)構(gòu):2022-4-2166CopyrightPei Zhang ,2014 Hull-White模型模型2022-4-2167CopyrightPei Zhang ,20143、Black-Karasinski模型模型 利率只取正值的短期利率模型:利率只取正值的短期利率模型: 參見(jiàn)參見(jiàn)Black和和Karasinski(1991) 缺陷:不能將債券價(jià)格表達(dá)為缺陷:不能將債券價(jià)格表達(dá)為r的解析的解析函數(shù)函數(shù)2022-4-2168CopyrightPei Zhang ,20144、Hull-White兩因子模型兩因子模型 Hull-White(1994)在)在Brenna

45、n和和Schwartz(1982)所提出的兩因子模型)所提出的兩因子模型基礎(chǔ)上,提出兩因子的無(wú)套利模型:基礎(chǔ)上,提出兩因子的無(wú)套利模型: U的初始值為的初始值為0,并且服從以下過(guò)程:,并且服從以下過(guò)程:2022-4-2169CopyrightPei Zhang ,2014(三)債券期權(quán)的定價(jià)公式:(三)債券期權(quán)的定價(jià)公式: 對(duì)于對(duì)于Vasicek模型、模型、Ho-Lee模型以及模型以及Hull-White模型,一個(gè)在時(shí)間模型,一個(gè)在時(shí)間s到期的零到期的零息債券,期限為息債券,期限為T的看漲期權(quán)在時(shí)間的看漲期權(quán)在時(shí)間0的的價(jià)值為:價(jià)值為: 其中:其中:L為債券本金,為債券本金,K為執(zhí)行價(jià)格,為執(zhí)行價(jià)格,2022-4-2170CopyrightPei Zhang ,2014(四)利率期權(quán)定價(jià)的樹(shù)形模型(四)利率期權(quán)定價(jià)的樹(shù)形模型 表示短期利率隨機(jī)過(guò)程在離散時(shí)間下的表示短期利率隨機(jī)過(guò)程在離散時(shí)間下的表現(xiàn)形式表現(xiàn)形式1、三叉樹(shù)模型的使用、三叉樹(shù)模型的使用 優(yōu)點(diǎn):比二叉樹(shù)多一項(xiàng)自由度,可以比優(yōu)點(diǎn):比二叉樹(shù)多一項(xiàng)自由度,可以比較容易的表示利率所服從的隨機(jī)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論