版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、. 圓錐曲線1.圓錐曲線的兩定義:第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與|FF|不可忽視。若|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡僅表示雙曲線的一支。2.圓錐曲線的標(biāo)準(zhǔn)方程(標(biāo)準(zhǔn)方程是指中心(頂點(diǎn))在原點(diǎn),坐標(biāo)軸為對稱軸時的標(biāo)準(zhǔn)位置的方程):(1)橢圓:焦點(diǎn)在軸上時(),焦點(diǎn)在軸上時1()。方程表示橢圓的充要條件是什么?(A
2、BC0,且A,B,C同號,AB)。(2)雙曲線:焦點(diǎn)在軸上: =1,焦點(diǎn)在軸上:1()。方程表示雙曲線的充要條件是什么?(ABC0,且A,B異號)。(3)拋物線:開口向右時,開口向左時,開口向上時,開口向下時。3.圓錐曲線焦點(diǎn)位置的判斷(首先化成標(biāo)準(zhǔn)方程,然后再判斷):(1)橢圓:由,分母的大小決定,焦點(diǎn)在分母大的坐標(biāo)軸上。(2)雙曲線:由,項(xiàng)系數(shù)的正負(fù)決定,焦點(diǎn)在系數(shù)為正的坐標(biāo)軸上;(3)拋物線:焦點(diǎn)在一次項(xiàng)的坐標(biāo)軸上,一次項(xiàng)的符號決定開口方向。提醒:在橢圓中,最大,在雙曲線中,最大,。4.圓錐曲線的幾何性質(zhì):(1)橢圓(以()為例):范圍:;焦點(diǎn):兩個焦點(diǎn);對稱性:兩條對稱軸,一個對稱中心
3、(0,0),四個頂點(diǎn),其中長軸長為2,短軸長為2;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,橢圓,越小,橢圓越圓;越大,橢圓越扁。(2)雙曲線(以()為例):范圍:或;焦點(diǎn):兩個焦點(diǎn);對稱性:兩條對稱軸,一個對稱中心(0,0),兩個頂點(diǎn),其中實(shí)軸長為2,虛軸長為2,特別地,當(dāng)實(shí)軸和虛軸的長相等時,稱為等軸雙曲線,其方程可設(shè)為;準(zhǔn)線:兩條準(zhǔn)線; 離心率:,雙曲線,等軸雙曲線,越小,開口越小,越大,開口越大;兩條漸近線:。(3)拋物線(以為例):范圍:;焦點(diǎn):一個焦點(diǎn),其中的幾何意義是:焦點(diǎn)到準(zhǔn)線的距離;對稱性:一條對稱軸,沒有對稱中心,只有一個頂點(diǎn)(0,0);準(zhǔn)線:一條準(zhǔn)線; 離心率:,拋物線。5、點(diǎn)和橢圓(
4、)的關(guān)系:(1)點(diǎn)在橢圓外;(2)點(diǎn)在橢圓上1;(3)點(diǎn)在橢圓內(nèi)6直線與圓錐曲線的位置關(guān)系:(1)相交:直線與橢圓相交; 直線與雙曲線相交,但直線與雙曲線相交不一定有,當(dāng)直線與雙曲線的漸近線平行時,直線與雙曲線相交且只有一個交點(diǎn),故是直線與雙曲線相交的充分條件,但不是必要條件;直線與拋物線相交,但直線與拋物線相交不一定有,當(dāng)直線與拋物線的對稱軸平行時,直線與拋物線相交且只有一個交點(diǎn),故也僅是直線與拋物線相交的充分條件,但不是必要條件。(2)相切:直線與橢圓相切;直線與雙曲線相切;直線與拋物線相切;(3)相離:直線與橢圓相離;直線與雙曲線相離;直線與拋物線相離。提醒:(1)直線與雙曲線、拋物線只
5、有一個公共點(diǎn)時的位置關(guān)系有兩種情形:相切和相交。如果直線與雙曲線的漸近線平行時,直線與雙曲線相交,但只有一個交點(diǎn);如果直線與拋物線的軸平行時,直線與拋物線相交,也只有一個交點(diǎn);(2)過雙曲線1外一點(diǎn)的直線與雙曲線只有一個公共點(diǎn)的情況如下:P點(diǎn)在兩條漸近線之間且不含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和分別與雙曲線兩支相切的兩條切線,共四條;P點(diǎn)在兩條漸近線之間且包含雙曲線的區(qū)域內(nèi)時,有兩條與漸近線平行的直線和只與雙曲線一支相切的兩條切線,共四條;P在兩條漸近線上但非原點(diǎn),只有兩條:一條是與另一漸近線平行的直線,一條是切線;P為原點(diǎn)時不存在這樣的直線;(3)過拋物線外一點(diǎn)總有三條直線和拋物
6、線有且只有一個公共點(diǎn):兩條切線和一條平行于對稱軸的直線。7、焦點(diǎn)三角形(橢圓或雙曲線上的一點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角形)問題: ,當(dāng)即為短軸端點(diǎn)時,的最大值為bc;對于雙曲線。 如 (1)短軸長為,8、拋物線中與焦點(diǎn)弦有關(guān)的一些幾何圖形的性質(zhì):(1)以過焦點(diǎn)的弦為直徑的圓和準(zhǔn)線相切;(2)設(shè)AB為焦點(diǎn)弦, M為準(zhǔn)線與x軸的交點(diǎn),則AMFBMF;(3)設(shè)AB為焦點(diǎn)弦,A、B在準(zhǔn)線上的射影分別為A,B,若P為AB的中點(diǎn),則PAPB;(4)若AO的延長線交準(zhǔn)線于C,則BC平行于x軸,反之,若過B點(diǎn)平行于x軸的直線交準(zhǔn)線于C點(diǎn),則A,O,C三點(diǎn)共線。9、 弦長公式:若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別
7、為A、B的橫坐標(biāo),則,若分別為A、B的縱坐標(biāo),則,若弦AB所在直線方程設(shè)為,則。特別地,焦點(diǎn)弦(過焦點(diǎn)的弦):焦點(diǎn)弦的弦長的計(jì)算,一般不用弦長公式計(jì)算,而是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解。10、 拋物線:在雙曲線中,以為中點(diǎn)的弦所在直線的斜率k=;在拋物線中,以為中點(diǎn)的弦所在直線的斜率k=。提醒:因?yàn)槭侵本€與圓錐曲線相交于兩點(diǎn)的必要條件,故在求解有關(guān)弦長、對稱問題時,務(wù)必別忘了檢驗(yàn)!11了解下列結(jié)論(1)雙曲線的漸近線方程為;(2)以為漸近線(即與雙曲線共漸近線)的雙曲線方程為為參數(shù),0)。(3)中心在原點(diǎn),坐標(biāo)軸為對稱軸的橢圓、雙曲線方程可設(shè)為;(4)橢圓、雙曲線的通徑(過
8、焦點(diǎn)且垂直于對稱軸的弦)為,焦準(zhǔn)距(焦點(diǎn)到相應(yīng)準(zhǔn)線的距離)為,拋物線的通徑為,焦準(zhǔn)距為; (5)通徑是所有焦點(diǎn)弦(過焦點(diǎn)的弦)中最短的弦;(6)若拋物線的焦點(diǎn)弦為AB,則;(7)若OA、OB是過拋物線頂點(diǎn)O的兩條互相垂直的弦,則直線AB恒經(jīng)過定點(diǎn)12、解析幾何與向量綜合時可能出現(xiàn)的向量內(nèi)容:(1) 給出直線的方向向量或;(2)給出與相交,等于已知過的中點(diǎn);(3)給出,等于已知是的中點(diǎn);(4)給出,等于已知與的中點(diǎn)三點(diǎn)共線;(5) 給出以下情形之一:;存在實(shí)數(shù);若存在實(shí)數(shù),等于已知三點(diǎn)共線.(6) 給出,等于已知,即是直角,給出,等于已知是鈍角, 給出,等于已知是銳角,(8)給出,等于已知是的平
9、分線/(9)在平行四邊形中,給出,等于已知是菱形;(10) 在平行四邊形中,給出,等于已知是矩形;(11)在中,給出,等于已知是的外心(三角形外接圓的圓心,三角形的外心是三角形三邊垂直平分線的交點(diǎn));(12) 在中,給出,等于已知是的重心(三角形的重心是三角形三條中線的交點(diǎn));(13)在中,給出,等于已知是的垂心(三角形的垂心是三角形三條高的交點(diǎn));(14)在中,給出等于已知通過的內(nèi)心;(15)在中,給出等于已知是的內(nèi)心(三角形內(nèi)切圓的圓心,三角形的內(nèi)心是三角形三條角平分線的交點(diǎn)); (16) 在中,給出,等于已知是中邊的中線; (3)已知A,B為拋物線x2=2py(p>0)上異于原點(diǎn)的
10、兩點(diǎn),點(diǎn)C坐標(biāo)為(0,2p)(1)求證:A,B,C三點(diǎn)共線; (2)若()且試求點(diǎn)M的軌跡方程。(1)證明:設(shè),由得,又,即A,B,C三點(diǎn)共線。(2) 由(1)知直線AB過定點(diǎn)C,又由及()知OMAB,垂足為M,所以點(diǎn)M的軌跡為以O(shè)C為直徑的圓,除去坐標(biāo)原點(diǎn)。即點(diǎn)M的軌跡方程為x2+(y-p)2=p2(x¹0,y¹0)。13.圓錐曲線中線段的最值問題:例1、(1)拋物線C:y2=4x上一點(diǎn)P到點(diǎn)A(3,4)與到準(zhǔn)線的距離和最小,則點(diǎn) P的坐標(biāo)為_ (2)拋物線C: y2=4x上一點(diǎn)Q到點(diǎn)B(4,1)與到焦點(diǎn)F的距離和最小,則點(diǎn)Q的坐標(biāo)為 。分析:(1)A在拋物線外,如圖,連
11、PF,則,因而易發(fā)現(xiàn),當(dāng)A、P、F三點(diǎn)共線時,距離和最小。(2) B在拋物線內(nèi),如圖,作QRl交于R,則當(dāng)B、Q、R三點(diǎn)共線時,距離和最小。 解:(1)(2,)(2)()1、已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。 (1) 求雙曲線C2的方程; (2) 若直線l:與橢圓C1及雙曲線C2恒有兩個不同的交點(diǎn),且l與C2的兩個交點(diǎn)A和B滿足(其中O為原點(diǎn)),求k的取值范圍。解:()設(shè)雙曲線C2的方程為,則故C2的方程為(II)將由直線l與橢圓C1恒有兩個不同的交點(diǎn)得即 .由直線l與雙曲線C2恒有兩個不同的交點(diǎn)A,B得 解此不等式得
12、 由、得故k的取值范圍為在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足MB/OA, MAAB = MBBA,M點(diǎn)的軌跡為曲線C。()求C的方程;()P為C上的動點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。()設(shè)M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意得知(+) =0,即(-x,-4-2y) (x,-2)=0.所以曲線C的方程式為y=x-2. ()設(shè)P(x,y)為曲線C:y=x-2上一點(diǎn),因?yàn)閥=x,所以的斜率為x因此直線的方程為,即。則O點(diǎn)到的距
13、離.又,所以當(dāng)=0時取等號,所以O(shè)點(diǎn)到距離的最小值為2.設(shè)雙曲線(a0,b0)的漸近線與拋物線y=x2 +1相切,則該雙曲線的離心率等于( )設(shè)雙曲線的一條漸近線,則雙曲線的離心率為( ). 過橢圓()的左焦點(diǎn)作軸的垂線交橢圓于點(diǎn),為右焦點(diǎn),若,則橢圓的離心率為已知雙曲線的左、右焦點(diǎn)分別是、,其一條漸近線方程為,點(diǎn)在雙曲線上.則·( )0已知直線與拋物線相交于兩點(diǎn),為的焦點(diǎn),若,則( )已知直線和直線,拋物線上一動點(diǎn)到直線和直線的距離之和的最小值是( )設(shè)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線l與拋物線C相交于A,B兩點(diǎn)。若AB的中點(diǎn)為(2,2),則直線l的方程為_.
14、橢圓的焦點(diǎn)為,點(diǎn)P在橢圓上,若,則 ;的大小為 .過拋物線的焦點(diǎn)F作傾斜角為的直線交拋物線于A、B兩點(diǎn),若線段AB的長為8,則_ 【解析】設(shè)切點(diǎn),則切線的斜率為.由題意有又解得: 雙曲線的一條漸近線為,由方程組,消去y,得有唯一解,所以=,所以,由漸近線方程為知雙曲線是等軸雙曲線,雙曲線方程是,于是兩焦點(diǎn)坐標(biāo)分別是(2,0)和(2,0),且或.不妨去,則,.·【解析】設(shè)拋物線的準(zhǔn)線為直線 恒過定點(diǎn)P .如圖過分 別作于,于, 由,則,點(diǎn)B為AP的中點(diǎn).連結(jié),則, 點(diǎn)的橫坐標(biāo)為, 故點(diǎn)的坐標(biāo)為, 故選D一、橢 圓1. 點(diǎn)P處的切線PT平分PF1F2在點(diǎn)P處的外角.2. PT平分PF1F
15、2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個端點(diǎn).3. 以焦點(diǎn)弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4. 以焦點(diǎn)半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5. 若在橢圓上,則過的橢圓的切線方程是.6. 若在橢圓外 ,則過Po作橢圓的兩條切線切點(diǎn)為P1、P2,則切點(diǎn)弦P1P2的直線方程是.7. 橢圓 (ab0)的左右焦點(diǎn)分別為F1,F(xiàn) 2,點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)角形的面積為.8. 橢圓(ab0)的焦半徑公式:,( , ).9. 設(shè)過橢圓焦點(diǎn)F作直線與橢圓相交 P、Q兩點(diǎn),A為橢圓長軸上一個頂點(diǎn),連結(jié)AP 和AQ分別交相應(yīng)于焦點(diǎn)F的橢圓準(zhǔn)線于M
16、、N兩點(diǎn),則MFNF.10. 過橢圓一個焦點(diǎn)F的直線與橢圓交于兩點(diǎn)P、Q, A1、A2為橢圓長軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MFNF.11. AB是橢圓的不平行于對稱軸的弦,M為AB的中點(diǎn),則,即。12. 若在橢圓內(nèi),則被Po所平分的中點(diǎn)弦的方程是.13. 若在橢圓內(nèi),則過Po的弦中點(diǎn)的軌跡方程是.二、雙曲線1. 點(diǎn)P處的切線PT平分PF1F2在點(diǎn)P處的內(nèi)角.2. PT平分PF1F2在點(diǎn)P處的內(nèi)角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個端點(diǎn).3. 以焦點(diǎn)弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相交.4. 以焦點(diǎn)半徑PF1為直徑的圓必與以實(shí)軸為直
17、徑的圓相切.(內(nèi)切:P在右支;外切:P在左支)5. 若在雙曲線(a0,b0)上,則過的雙曲線的切線方程是.6. 若在雙曲線(a0,b0)外 ,則過Po作雙曲線的兩條切線切點(diǎn)為P1、P2,則切點(diǎn)弦P1P2的直線方程是.7. 雙曲線(a0,bo)的左右焦點(diǎn)分別為F1,F(xiàn) 2,點(diǎn)P為雙曲線上任意一點(diǎn),則雙曲線的焦點(diǎn)角形的面積為.8. 雙曲線(a0,bo)的焦半徑公式:( , 當(dāng)在右支上時,,.當(dāng)在左支上時,,9. 設(shè)過雙曲線焦點(diǎn)F作直線與雙曲線相交 P、Q兩點(diǎn),A為雙曲線長軸上一個頂點(diǎn),連結(jié)AP 和AQ分別交相應(yīng)于焦點(diǎn)F的雙曲線準(zhǔn)線于M、N兩點(diǎn),則MFNF.10. 過雙曲線一個焦點(diǎn)F的直線與雙曲線交
18、于兩點(diǎn)P、Q, A1、A2為雙曲線實(shí)軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MFNF.11. AB是雙曲線(a0,b0)的不平行于對稱軸的弦,M為AB的中點(diǎn),則,即。12. 若在雙曲線(a0,b0)內(nèi),則被Po所平分的中點(diǎn)弦的方程是.13. 若在雙曲線(a0,b0)內(nèi),則過Po的弦中點(diǎn)的軌跡方程是.橢圓與雙曲線的對偶性質(zhì)-(會推導(dǎo)的經(jīng)典結(jié)論)橢 圓1. 橢圓(abo)的兩個頂點(diǎn)為,,與y軸平行的直線交橢圓于P1、P2時A1P1與A2P2交點(diǎn)的軌跡方程是.2. 過橢圓 (a0, b0)上任一點(diǎn)任意作兩條傾斜角互補(bǔ)的直線交橢圓于B,C兩點(diǎn),則直線BC有定向且(常數(shù)).3. 若
19、P為橢圓(ab0)上異于長軸端點(diǎn)的任一點(diǎn),F1, F 2是焦點(diǎn), , ,則.4. 設(shè)橢圓(ab0)的兩個焦點(diǎn)為F1、F2,P(異于長軸端點(diǎn))為橢圓上任意一點(diǎn),在PF1F2中,記, ,,則有.5. 若橢圓(ab0)的左、右焦點(diǎn)分別為F1、F2,左準(zhǔn)線為L,則當(dāng)0e時,可在橢圓上求一點(diǎn)P,使得PF1是P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項(xiàng).6. P為橢圓(ab0)上任一點(diǎn),F1,F2為二焦點(diǎn),A為橢圓內(nèi)一定點(diǎn),則,當(dāng)且僅當(dāng)三點(diǎn)共線時,等號成立.7. 橢圓與直線有公共點(diǎn)的充要條件是.8. 已知橢圓(ab0),O為坐標(biāo)原點(diǎn),P、Q為橢圓上兩動點(diǎn),且.(1);(2)|OP|2+|OQ|2的最大值為;(3)
20、的最小值是.9. 過橢圓(ab0)的右焦點(diǎn)F作直線交該橢圓右支于M,N兩點(diǎn),弦MN的垂直平分線交x軸于P,則.10. 已知橢圓( ab0),A、B、是橢圓上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn), 則.11. 設(shè)P點(diǎn)是橢圓( ab0)上異于長軸端點(diǎn)的任一點(diǎn),F1、F2為其焦點(diǎn)記,則(1).(2) .12. 設(shè)A、B是橢圓( ab0)的長軸兩端點(diǎn),P是橢圓上的一點(diǎn),, ,,c、e分別是橢圓的半焦距離心率,則有(1).(2) .(3) .13. 已知橢圓( ab0)的右準(zhǔn)線與x軸相交于點(diǎn),過橢圓右焦點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),點(diǎn)在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點(diǎn).14. 過橢
21、圓焦半徑的端點(diǎn)作橢圓的切線,與以長軸為直徑的圓相交,則相應(yīng)交點(diǎn)與相應(yīng)焦點(diǎn)的連線必與切線垂直.15. 過橢圓焦半徑的端點(diǎn)作橢圓的切線交相應(yīng)準(zhǔn)線于一點(diǎn),則該點(diǎn)與焦點(diǎn)的連線必與焦半徑互相垂直.16. 橢圓焦三角形中,內(nèi)點(diǎn)到一焦點(diǎn)的距離與以該焦點(diǎn)為端點(diǎn)的焦半徑之比為常數(shù)e(離心率). (注:在橢圓焦三角形中,非焦頂點(diǎn)的內(nèi)、外角平分線與長軸交點(diǎn)分別稱為內(nèi)、外點(diǎn).)17. 橢圓焦三角形中,內(nèi)心將內(nèi)點(diǎn)與非焦頂點(diǎn)連線段分成定比e.18. 橢圓焦三角形中,半焦距必為內(nèi)、外點(diǎn)到橢圓中心的比例中項(xiàng).雙曲線1. 雙曲線(a0,b0)的兩個頂點(diǎn)為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點(diǎn)的軌跡方程
22、是.2. 過雙曲線(a0,bo)上任一點(diǎn)任意作兩條傾斜角互補(bǔ)的直線交雙曲線于B,C兩點(diǎn),則直線BC有定向且(常數(shù)).3. 若P為雙曲線(a0,b0)右(或左)支上除頂點(diǎn)外的任一點(diǎn),F1, F 2是焦點(diǎn), , ,則(或).4. 設(shè)雙曲線(a0,b0)的兩個焦點(diǎn)為F1、F2,P(異于長軸端點(diǎn))為雙曲線上任意一點(diǎn),在PF1F2中,記, ,,則有.5. 若雙曲線(a0,b0)的左、右焦點(diǎn)分別為F1、F2,左準(zhǔn)線為L,則當(dāng)1e時,可在雙曲線上求一點(diǎn)P,使得PF1是P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項(xiàng).6. P為雙曲線(a0,b0)上任一點(diǎn),F1,F2為二焦點(diǎn),A為雙曲線內(nèi)一定點(diǎn),則,當(dāng)且僅當(dāng)三點(diǎn)共線且和
23、在y軸同側(cè)時,等號成立.7. 雙曲線(a0,b0)與直線有公共點(diǎn)的充要條件是.8. 已知雙曲線(ba 0),O為坐標(biāo)原點(diǎn),P、Q為雙曲線上兩動點(diǎn),且.(1);(2)|OP|2+|OQ|2的最小值為;(3)的最小值是.9. 過雙曲線(a0,b0)的右焦點(diǎn)F作直線交該雙曲線的右支于M,N兩點(diǎn),弦MN的垂直平分線交x軸于P,則.10. 已知雙曲線(a0,b0),A、B是雙曲線上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn), 則或.11. 設(shè)P點(diǎn)是雙曲線(a0,b0)上異于實(shí)軸端點(diǎn)的任一點(diǎn),F1、F2為其焦點(diǎn)記,則(1).(2) .12. 設(shè)A、B是雙曲線(a0,b0)的長軸兩端點(diǎn),P是雙曲線上的一點(diǎn),
24、, ,,c、e分別是雙曲線的半焦距離心率,則有(1).(2) .(3) .13. 已知雙曲線(a0,b0)的右準(zhǔn)線與x軸相交于點(diǎn),過雙曲線右焦點(diǎn)的直線與雙曲線相交于A、B兩點(diǎn),點(diǎn)在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點(diǎn).14. 過雙曲線焦半徑的端點(diǎn)作雙曲線的切線,與以長軸為直徑的圓相交,則相應(yīng)交點(diǎn)與相應(yīng)焦點(diǎn)的連線必與切線垂直.15. 過雙曲線焦半徑的端點(diǎn)作雙曲線的切線交相應(yīng)準(zhǔn)線于一點(diǎn),則該點(diǎn)與焦點(diǎn)的連線必與焦半徑互相垂直.16. 雙曲線焦三角形中,外點(diǎn)到一焦點(diǎn)的距離與以該焦點(diǎn)為端點(diǎn)的焦半徑之比為常數(shù)e(離心率).(注:在雙曲線焦三角形中,非焦頂點(diǎn)的內(nèi)、外角平分線與長軸交點(diǎn)分別稱為內(nèi)、外
25、點(diǎn)).17. 雙曲線焦三角形中,其焦點(diǎn)所對的旁心將外點(diǎn)與非焦頂點(diǎn)連線段分成定比e.18. 雙曲線焦三角形中,半焦距必為內(nèi)、外點(diǎn)到雙曲線中心的比例中項(xiàng).其他常用公式:1、連結(jié)圓錐曲線上兩個點(diǎn)的線段稱為圓錐曲線的弦,利用方程的根與系數(shù)關(guān)系來計(jì)算弦長,常用的弦長公式:2、直線的一般式方程:任何直線均可寫成(A,B不同時為0)的形式。3、知直線橫截距,常設(shè)其方程為(它不適用于斜率為0的直線)與直線垂直的直線可表示為。4、兩平行線間的距離為。5、若直線與直線平行則 (斜率)且(在軸上截距) (充要條件)6、圓的一般方程:,特別提醒:只有當(dāng)時,方程才表示圓心為,半徑為的圓。二元二次方程表示圓的充要條件是且
26、且。 7、圓的參數(shù)方程:(為參數(shù)),其中圓心為,半徑為。圓的參數(shù)方程的主要應(yīng)用是三角換元:;8、為直徑端點(diǎn)的圓方程切線長:過圓()外一點(diǎn)所引圓的切線的長為()9、弦長問題:圓的弦長的計(jì)算:常用弦心距,弦長一半及圓的半徑所構(gòu)成的直角三角形來解:;過兩圓、交點(diǎn)的圓(公共弦)系為,當(dāng)時,方程為兩圓公共弦所在直線方程.。攻克圓錐曲線解答題的策略摘要:為幫助高三學(xué)生學(xué)好圓錐曲線解答題,提高成績,戰(zhàn)勝高考,可從四個方面著手:知識儲備、方法儲備、思維訓(xùn)練、強(qiáng)化訓(xùn)練。關(guān)鍵詞:知識儲備 方法儲備 思維訓(xùn)練 強(qiáng)化訓(xùn)練第一、知識儲備:1. 直線方程的形式(1)直線方程的形式有五件:點(diǎn)斜式、兩點(diǎn)式、斜截式、
27、截距式、一般式。(2)與直線相關(guān)的重要內(nèi)容傾斜角與斜率點(diǎn)到直線的距離 夾角公式:(3)弦長公式直線上兩點(diǎn)間的距離: 或(4)兩條直線的位置關(guān)系=-1 2、圓錐曲線方程及性質(zhì)(1)、橢圓的方程的形式有幾種?(三種形式) 標(biāo)準(zhǔn)方程: 距離式方程: 參數(shù)方程:(2)、雙曲線的方程的形式有兩種 標(biāo)準(zhǔn)方程: 距離式方程:(3)、三種圓錐曲線的通徑你記得嗎? (4)、圓錐曲線的定義你記清楚了嗎?如:已知是橢圓的兩個焦點(diǎn),平面內(nèi)一個動點(diǎn)M滿足則動點(diǎn)M的軌跡是( )A、雙曲線;B、雙曲線的一支;C、兩條射線;D、一條射線(5)、焦點(diǎn)三角形面積公式: (其中)(6)、記住焦半徑公式:(1),可簡記為“左加右減,
28、上加下減”。 (2) (3)(6)、橢圓和雙曲線的基本量三角形你清楚嗎? 第二、方法儲備1、點(diǎn)差法(中點(diǎn)弦問題)設(shè)、,為橢圓的弦中點(diǎn)則有,;兩式相減得=2、聯(lián)立消元法:你會解直線與圓錐曲線的位置關(guān)系一類的問題嗎?經(jīng)典套路是什么?如果有兩個參數(shù)怎么辦? 設(shè)直線的方程,并且與曲線的方程聯(lián)立,消去一個未知數(shù),得到一個二次方程,使用判別式,以及根與系數(shù)的關(guān)系,代入弦長公式,設(shè)曲線上的兩點(diǎn),將這兩點(diǎn)代入曲線方程得到兩個式子,然后-,整體消元······,若有兩個字母未知數(shù),則要找到它們的聯(lián)系,消去一個,比如直線過焦點(diǎn),則可以利用三點(diǎn)A、B、F共
29、線解決之。若有向量的關(guān)系,則尋找坐標(biāo)之間的關(guān)系,根與系數(shù)的關(guān)系結(jié)合消元處理。一旦設(shè)直線為,就意味著k存在。例1、已知三角形ABC的三個頂點(diǎn)均在橢圓上,且點(diǎn)A是橢圓短軸的一個端點(diǎn)(點(diǎn)A在y軸正半軸上).(1)若三角形ABC的重心是橢圓的右焦點(diǎn),試求直線BC的方程;(2)若角A為,AD垂直BC于D,試求點(diǎn)D的軌跡方程.分析:第一問抓住“重心”,利用點(diǎn)差法及重心坐標(biāo)公式可求出中點(diǎn)弦BC的斜率,從而寫出直線BC的方程。第二問抓住角A為可得出ABAC,從而得,然后利用聯(lián)立消元法及交軌法求出點(diǎn)D的軌跡方程;解:(1)設(shè)B(,),C(,),BC中點(diǎn)為(),F(2,0)則有兩式作差有 (1)F(2,0)為三角
30、形重心,所以由,得,由得,代入(1)得直線BC的方程為2)由ABAC得 (2)設(shè)直線BC方程為,得, 代入(2)式得,解得或直線過定點(diǎn)(0,設(shè)D(x,y),則,即所以所求點(diǎn)D的軌跡方程是。4、設(shè)而不求法例2、如圖,已知梯形ABCD中,點(diǎn)E分有向線段所成的比為,雙曲線過C、D、E三點(diǎn),且以A、B為焦點(diǎn)當(dāng)時,求雙曲線離心率的取值范圍。分析:本小題主要考查坐標(biāo)法、定比分點(diǎn)坐標(biāo)公式、雙曲線的概念和性質(zhì),推理、運(yùn)算能力和綜合運(yùn)用數(shù)學(xué)知識解決問題的能力。建立直角坐標(biāo)系,如圖,若設(shè)C,代入,求得,進(jìn)而求得再代入,建立目標(biāo)函數(shù),整理,此運(yùn)算量可見是難上加難.我們對可采取設(shè)而不求的解題策略,建立目標(biāo)函數(shù),整理,
31、化繁為簡. 解法一:如圖,以AB為垂直平分線為軸,直線AB為軸,建立直角坐標(biāo)系,則CD軸因?yàn)殡p曲線經(jīng)過點(diǎn)C、D,且以A、B為焦點(diǎn),由雙曲線的對稱性知C、D關(guān)于軸對稱 依題意,記A,C,E,其中為雙曲線的半焦距,是梯形的高,由定比分點(diǎn)坐標(biāo)公式得 , 設(shè)雙曲線的方程為,則離心率由點(diǎn)C、E在雙曲線上,將點(diǎn)C、E的坐標(biāo)和代入雙曲線方程得 , 由式得 , 將式代入式,整理得 ,故 由題設(shè)得,解得 所以雙曲線的離心率的取值范圍為 分析:考慮為焦半徑,可用焦半徑公式, 用的橫坐標(biāo)表示,回避的計(jì)算, 達(dá)到設(shè)而不求的解題策略 解法二:建系同解法一,又,代入整理,由題設(shè)得,解得 所以雙曲線的離心率的取值范圍為 5
32、、判別式法例3已知雙曲線,直線過點(diǎn),斜率為,當(dāng)時,雙曲線的上支上有且僅有一點(diǎn)B到直線的距離為,試求的值及此時點(diǎn)B的坐標(biāo)。分析1:解析幾何是用代數(shù)方法來研究幾何圖形的一門學(xué)科,因此,數(shù)形結(jié)合必然是研究解析幾何問題的重要手段. 從“有且僅有”這個微觀入手,對照草圖,不難想到:過點(diǎn)B作與平行的直線,必與雙曲線C相切. 而相切的代數(shù)表現(xiàn)形式是所構(gòu)造方程的判別式. 由此出發(fā),可設(shè)計(jì)如下解題思路:把直線l的方程代入雙曲線方程,消去y,令判別式直線l在l的上方且到直線l的距離為解題過程略.分析2:如果從代數(shù)推理的角度去思考,就應(yīng)當(dāng)把距離用代數(shù)式表達(dá),即所謂“有且僅有一點(diǎn)B到直線的距離為”,相當(dāng)于化歸的方程有
33、唯一解. 據(jù)此設(shè)計(jì)出如下解題思路:轉(zhuǎn)化為一元二次方程根的問題求解問題關(guān)于x的方程有唯一解簡解:設(shè)點(diǎn)為雙曲線C上支上任一點(diǎn),則點(diǎn)M到直線的距離為: 于是,問題即可轉(zhuǎn)化為如上關(guān)于的方程.由于,所以,從而有于是關(guān)于的方程 由可知: 方程的二根同正,故恒成立,于是等價于.由如上關(guān)于的方程有唯一解,得其判別式,就可解得 .點(diǎn)評:上述解法緊扣解題目標(biāo),不斷進(jìn)行問題轉(zhuǎn)換,充分體現(xiàn)了全局觀念與整體思維的優(yōu)越性.例4已知橢圓C:和點(diǎn)P(4,1),過P作直線交橢圓于A、B兩點(diǎn),在線段AB上取點(diǎn)Q,使,求動點(diǎn)Q的軌跡所在曲線的方程.分析:這是一個軌跡問題,解題困難在于多動點(diǎn)的困擾,學(xué)生往往不知從何入手。其實(shí),應(yīng)該想
34、到軌跡問題可以通過參數(shù)法求解. 因此,首先是選定參數(shù),然后想方設(shè)法將點(diǎn)Q的橫、縱坐標(biāo)用參數(shù)表達(dá),最后通過消參可達(dá)到解題的目的.由于點(diǎn)的變化是由直線AB的變化引起的,自然可選擇直線AB的斜率作為參數(shù),如何將與聯(lián)系起來?一方面利用點(diǎn)Q在直線AB上;另一方面就是運(yùn)用題目條件:來轉(zhuǎn)化.由A、B、P、Q四點(diǎn)共線,不難得到,要建立與的關(guān)系,只需將直線AB的方程代入橢圓C的方程,利用韋達(dá)定理即可.通過這樣的分析,可以看出,雖然我們還沒有開始解題,但對于如何解決本題,已經(jīng)做到心中有數(shù). 將直線方程代入橢圓方程,消去y,利用韋達(dá)定理利用點(diǎn)Q滿足直線AB的方程:y = k (x4)+1,消去參數(shù)k點(diǎn)Q的軌跡方程在
35、得到之后,如果能夠從整體上把握,認(rèn)識到:所謂消參,目的不過是得到關(guān)于的方程(不含k),則可由解得,直接代入即可得到軌跡方程。從而簡化消去參的過程。簡解:設(shè),則由可得:,解之得: (1)設(shè)直線AB的方程為:,代入橢圓C的方程,消去得出關(guān)于 x的一元二次方程: (2) 代入(1),化簡得: (3)與聯(lián)立,消去得:在(2)中,由,解得 ,結(jié)合(3)可求得 故知點(diǎn)Q的軌跡方程為: ().點(diǎn)評:由方程組實(shí)施消元,產(chǎn)生一個標(biāo)準(zhǔn)的關(guān)于一個變量的一元二次方程,其判別式、韋達(dá)定理模塊思維易于想到. 這當(dāng)中,難點(diǎn)在引出參,活點(diǎn)在應(yīng)用參,重點(diǎn)在消去參.,而“引參、用參、消參”三步曲,正是解析幾何綜合問題求解的一條有
36、效通道.6、求根公式法例5設(shè)直線過點(diǎn)P(0,3),和橢圓順次交于A、B兩點(diǎn),試求的取值范圍.分析:本題中,絕大多數(shù)同學(xué)不難得到:=,但從此后卻一籌莫展, 問題的根源在于對題目的整體把握不夠. 事實(shí)上,所謂求取值范圍,不外乎兩條路:其一是構(gòu)造所求變量關(guān)于某個(或某幾個)參數(shù)的函數(shù)關(guān)系式(或方程),這只需利用對應(yīng)的思想實(shí)施;其二則是構(gòu)造關(guān)于所求量的一個不等關(guān)系.分析1:從第一條想法入手,=已經(jīng)是一個關(guān)系式,但由于有兩個變量,同時這兩個變量的范圍不好控制,所以自然想到利用第3個變量直線AB的斜率k. 問題就轉(zhuǎn)化為如何將轉(zhuǎn)化為關(guān)于k的表達(dá)式,到此為止,將直線方程代入橢圓方程,消去y得出關(guān)于的一元二次方
37、程,其求根公式呼之欲出.所求量的取值范圍把直線l的方程y = kx+3代入橢圓方程,消去y得到關(guān)于x的一元二次方程xA= f(k),xB = g(k)得到所求量關(guān)于k的函數(shù)關(guān)系式求根公式AP/PB = (xA / xB)由判別式得出k的取值范圍簡解1:當(dāng)直線垂直于x軸時,可求得;當(dāng)與x軸不垂直時,設(shè),直線的方程為:,代入橢圓方程,消去得解之得 因?yàn)闄E圓關(guān)于y軸對稱,點(diǎn)P在y軸上,所以只需考慮的情形.當(dāng)時,所以 =.由 , 解得 ,所以 ,綜上 .分析2: 如果想構(gòu)造關(guān)于所求量的不等式,則應(yīng)該考慮到:判別式往往是產(chǎn)生不等的根源. 由判別式值的非負(fù)性可以很快確定的取值范圍,于是問題轉(zhuǎn)化為如何將所求
38、量與聯(lián)系起來. 一般來說,韋達(dá)定理總是充當(dāng)這種問題的橋梁,但本題無法直接應(yīng)用韋達(dá)定理,原因在于不是關(guān)于的對稱關(guān)系式. 原因找到后,解決問題的方法自然也就有了,即我們可以構(gòu)造關(guān)于的對稱關(guān)系式.把直線l的方程y = kx+3代入橢圓方程,消去y得到關(guān)于x的一元二次方程xA+ xB = f(k),xA xB = g(k)構(gòu)造所求量與k的關(guān)系式關(guān)于所求量的不等式韋達(dá)定理AP/PB = (xA / xB)由判別式得出k的取值范圍簡解2:設(shè)直線的方程為:,代入橢圓方程,消去得 (*)則令,則,在(*)中,由判別式可得 ,從而有 ,所以 ,解得 .結(jié)合得. 綜上,.點(diǎn)評:范圍問題不等關(guān)系的建立途徑多多,諸如
39、判別式法,均值不等式法,變量的有界性法,函數(shù)的性質(zhì)法,數(shù)形結(jié)合法等等. 本題也可從數(shù)形結(jié)合的角度入手,給出又一優(yōu)美解法.解題猶如打仗,不能只是忙于沖鋒陷陣,一時局部的勝利并不能說明問題,有時甚至?xí)痪植克m纏而看不清問題的實(shí)質(zhì)所在,只有見微知著,樹立全局觀念,講究排兵布陣,運(yùn)籌帷幄,方能決勝千里.第三、推理訓(xùn)練:數(shù)學(xué)推理是由已知的數(shù)學(xué)命題得出新命題的基本思維形式,它是數(shù)學(xué)求解的核心。以已知的真實(shí)數(shù)學(xué)命題,即定義、公理、定理、性質(zhì)等為依據(jù),選擇恰當(dāng)?shù)慕忸}方法,達(dá)到解題目標(biāo),得出結(jié)論的一系列推理過程。在推理過程中,必須注意所使用的命題之間的相互關(guān)系(充分性、必要性、充要性等),做到思考縝密、推理嚴(yán)
40、密。通過編寫思維流程圖來錘煉自己的大腦,快速提高解題能力。例6橢圓長軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),且,()求橢圓的標(biāo)準(zhǔn)方程;()記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由。思維流程:寫出橢圓方程由,() 由F為的重心()兩根之和,兩根之積得出關(guān)于m的方程解出m 消元 解題過程: ()如圖建系,設(shè)橢圓方程為,則又即 , 故橢圓方程為 ()假設(shè)存在直線交橢圓于兩點(diǎn),且恰為的垂心,則設(shè),故,于是設(shè)直線為 ,由得, 又得 即 由韋達(dá)定理得 解得或(舍) 經(jīng)檢驗(yàn)符合條件點(diǎn)石成金:垂心的特點(diǎn)是垂心與頂點(diǎn)的連線垂直對邊,然后轉(zhuǎn)化為兩向量乘積為零例7、已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、三點(diǎn)()求橢圓的方程:()若點(diǎn)D為橢圓上不同于、的任意一點(diǎn),當(dāng)內(nèi)切圓的面積最大時,求內(nèi)心的坐標(biāo);由橢圓經(jīng)過A、B、C三點(diǎn)設(shè)方程為得到的方程組解出思維流程:() 由內(nèi)切圓面積最大轉(zhuǎn)化為面積最大轉(zhuǎn)化為點(diǎn)的縱坐標(biāo)的絕對值最大最大為橢圓短軸端點(diǎn)面積最大值為() 得出點(diǎn)坐標(biāo)為解題過程: ()設(shè)橢圓方程為,將、代入橢圓E的方程,得解得.橢圓的方程 (),設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣工程師的工作總結(jié)
- 2025年度商業(yè)寫字樓車位使用權(quán)轉(zhuǎn)讓合同模板
- 二零二五年度大型商場消防工程驗(yàn)收及安全評估合同3篇
- 二零二五年度個人消費(fèi)信貸合同模板8篇
- 二零二五年度青少年戶外夏令營活動參加協(xié)議3篇
- 二零二五版房地產(chǎn)售后服務(wù)居間合同范本
- 二零二五年度個人房產(chǎn)買賣合同終止協(xié)議3篇
- 二零二五年度鋼材采購與供應(yīng)合同范本
- 二零二五年度深海探測設(shè)備制造個人工勞務(wù)分包合同4篇
- 二零二五年度離婚探望權(quán)協(xié)議范本與子女監(jiān)護(hù)權(quán)規(guī)定3篇
- 給排水科學(xué)與工程基礎(chǔ)知識單選題100道及答案解析
- 2024年土地變更調(diào)查培訓(xùn)
- 2024年全國外貿(mào)單證員鑒定理論試題庫(含答案)
- 新版中國食物成分表
- 《財務(wù)管理學(xué)(第10版)》課件 第5、6章 長期籌資方式、資本結(jié)構(gòu)決策
- 房屋永久居住權(quán)合同模板
- 初中英語不規(guī)則動詞表(譯林版-中英)
- 2024年3月四川省公務(wù)員考試面試題及參考答案
- 新生兒黃疸早期識別課件
- 醫(yī)藥營銷團(tuán)隊(duì)建設(shè)與管理
- 二年級數(shù)學(xué)上冊口算題100道(全冊完整)
評論
0/150
提交評論