數(shù)據(jù)挖掘試題(150道)_第1頁
數(shù)據(jù)挖掘試題(150道)_第2頁
數(shù)據(jù)挖掘試題(150道)_第3頁
數(shù)據(jù)挖掘試題(150道)_第4頁
數(shù)據(jù)挖掘試題(150道)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上單選題1. 某超市研究銷售紀(jì)錄數(shù)據(jù)后發(fā)現(xiàn),買啤酒的人很大概率也會購買尿布,這種屬于數(shù)據(jù)挖掘的哪類問題?(A) A. 關(guān)聯(lián)規(guī)則發(fā)現(xiàn) B. 聚類 C. 分類 D. 自然語言處理2. 以下兩種描述分別對應(yīng)哪兩種對分類算法的評價(jià)標(biāo)準(zhǔn)? (A) (a)警察抓小偷,描述警察抓的人中有多少個是小偷的標(biāo)準(zhǔn)。 (b)描述有多少比例的小偷給警察抓了的標(biāo)準(zhǔn)。 A. Precision, Recall B. Recall, Precision A. Precision, ROC D. Recall, ROC3. 將原始數(shù)據(jù)進(jìn)行集成、變換、維度規(guī)約、數(shù)值規(guī)約是在以下哪個步驟的任務(wù)?(C) A.

2、 頻繁模式挖掘 B. 分類和預(yù)測 C. 數(shù)據(jù)預(yù)處理 D. 數(shù)據(jù)流挖掘4. 當(dāng)不知道數(shù)據(jù)所帶標(biāo)簽時,可以使用哪種技術(shù)促使帶同類標(biāo)簽的數(shù)據(jù)與帶其他標(biāo)簽的數(shù)據(jù)相分離?(B) A. 分類 B. 聚類 C. 關(guān)聯(lián)分析 D. 隱馬爾可夫鏈5. 什么是KDD? (A) A. 數(shù)據(jù)挖掘與知識發(fā)現(xiàn) B. 領(lǐng)域知識發(fā)現(xiàn) C. 文檔知識發(fā)現(xiàn) D. 動態(tài)知識發(fā)現(xiàn)6. 使用交互式的和可視化的技術(shù),對數(shù)據(jù)進(jìn)行探索屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(A) A. 探索性數(shù)據(jù)分析 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則7. 為數(shù)據(jù)的總體分布建模;把多維空間劃分成組等問題屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(B) A. 探索性數(shù)據(jù)分

3、析 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則8. 建立一個模型,通過這個模型根據(jù)已知的變量值來預(yù)測其他某個變量值屬于數(shù)據(jù)挖掘的哪一類任務(wù)?(C) A. 根據(jù)內(nèi)容檢索 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則9. 用戶有一種感興趣的模式并且希望在數(shù)據(jù)集中找到相似的模式,屬于數(shù)據(jù)挖掘哪一類任務(wù)?(A) A. 根據(jù)內(nèi)容檢索 B. 建模描述 C. 預(yù)測建模 D. 尋找模式和規(guī)則 11.下面哪種不屬于數(shù)據(jù)預(yù)處理的方法? (D)A變量代換 B離散化 C 聚集 D 估計(jì)遺漏值 12. 假設(shè)12個銷售價(jià)格記錄組已經(jīng)排序如下:5, 10, 11, 13, 15, 35, 50, 55,

4、72, 92, 204, 215 使用如下每種方法將它們劃分成四個箱。等頻(等深)劃分時,15在第幾個箱子內(nèi)? (B)A 第一個 B 第二個 C 第三個 D 第四個 13.上題中,等寬劃分時(寬度為50),15又在哪個箱子里? (A)A 第一個 B 第二個 C 第三個 D 第四個 14.下面哪個不屬于數(shù)據(jù)的屬性類型:(D)A 標(biāo)稱 B 序數(shù) C 區(qū)間 D相異 15. 在上題中,屬于定量的屬性類型是:(C)A 標(biāo)稱 B 序數(shù) C區(qū)間 D 相異 16. 只有非零值才重要的二元屬性被稱作:( C )A 計(jì)數(shù)屬性 B 離散屬性 C非對稱的二元屬性 D 對稱屬性 17. 以下哪種方法不屬于特征選擇的標(biāo)準(zhǔn)

5、方法: (D)A嵌入 B 過濾 C 包裝 D 抽樣 18.下面不屬于創(chuàng)建新屬性的相關(guān)方法的是: (B)A特征提取 B特征修改 C映射數(shù)據(jù)到新的空間 D特征構(gòu)造 A 傅立葉變換 B特征加權(quán) C 漸進(jìn)抽樣 D維歸約 22. 假設(shè)屬性income的最大最小值分別是12000元和98000元。利用最大最小規(guī)范化的方 26. 下列哪個不是專門用于可視化時間空間數(shù)據(jù)的技術(shù): (B)A 等高線圖 B餅圖 C 曲面圖 D 矢量場圖 27. 在抽樣方法中,當(dāng)合適的樣本容量很難確定時,可以使用的抽樣方法是: (D)A 有放回的簡單隨機(jī)抽樣 B無放回的簡單隨機(jī)抽樣 C分層抽樣 D 漸進(jìn)抽樣28. 數(shù)據(jù)倉庫是隨著時間

6、變化的,下面的描述不正確的是 (C)A. 數(shù)據(jù)倉庫隨時間的變化不斷增加新的數(shù)據(jù)內(nèi)容;B. 捕捉到的新數(shù)據(jù)會覆蓋原來的快照;C. 數(shù)據(jù)倉庫隨事件變化不斷刪去舊的數(shù)據(jù)內(nèi)容;D. 數(shù)據(jù)倉庫中包含大量的綜合數(shù)據(jù),這些綜合數(shù)據(jù)會隨著時間的變化不斷地進(jìn)行重新綜合.29. 關(guān)于基本數(shù)據(jù)的元數(shù)據(jù)是指: (D)A. 基本元數(shù)據(jù)與數(shù)據(jù)源,數(shù)據(jù)倉庫,數(shù)據(jù)集市和應(yīng)用程序等結(jié)構(gòu)相關(guān)的信息;B. 基本元數(shù)據(jù)包括與企業(yè)相關(guān)的管理方面的數(shù)據(jù)和信息;C. 基本元數(shù)據(jù)包括日志文件和簡歷執(zhí)行處理的時序調(diào)度信息;D. 基本元數(shù)據(jù)包括關(guān)于裝載和更新處理,分析處理以及管理方面的信息.30. 下面關(guān)于數(shù)據(jù)粒度的描述不正確的是: (C)A.

7、 粒度是指數(shù)據(jù)倉庫小數(shù)據(jù)單元的詳細(xì)程度和級別;B. 數(shù)據(jù)越詳細(xì),粒度就越小,級別也就越高;C. 數(shù)據(jù)綜合度越高,粒度也就越大,級別也就越高;D. 粒度的具體劃分將直接影響數(shù)據(jù)倉庫中的數(shù)據(jù)量以及查詢質(zhì)量.31. 有關(guān)數(shù)據(jù)倉庫的開發(fā)特點(diǎn),不正確的描述是: (A)A. 數(shù)據(jù)倉庫開發(fā)要從數(shù)據(jù)出發(fā);B. 數(shù)據(jù)倉庫使用的需求在開發(fā)出去就要明確;C. 數(shù)據(jù)倉庫的開發(fā)是一個不斷循環(huán)的過程,是啟發(fā)式的開發(fā);D. 在數(shù)據(jù)倉庫環(huán)境中,并不存在操作型環(huán)境中所固定的和較確切的處理流,數(shù)據(jù)倉庫中數(shù)據(jù)分析和處理更靈活,且沒有固定的模式32. 在有關(guān)數(shù)據(jù)倉庫測試,下列說法不正確的是: (D)A. 在完成數(shù)據(jù)倉庫的實(shí)施過程中,

8、需要對數(shù)據(jù)倉庫進(jìn)行各種測試.測試工作中要包括單元測試和系統(tǒng)測試.B. 當(dāng)數(shù)據(jù)倉庫的每個單獨(dú)組件完成后,就需要對他們進(jìn)行單元測試.C. 系統(tǒng)的集成測試需要對數(shù)據(jù)倉庫的所有組件進(jìn)行大量的功能測試和回歸測試.D. 在測試之前沒必要制定詳細(xì)的測試計(jì)劃.33. OLAP技術(shù)的核心是: (D)A. 在線性;B. 對用戶的快速響應(yīng);C. 互操作性.D. 多維分析;34. 關(guān)于OLAP的特性,下面正確的是: (D)(1)快速性 (2)可分析性 (3)多維性 (4)信息性 (5)共享性A. (1) (2) (3)B. (2) (3) (4)C. (1) (2) (3) (4)D. (1) (2) (3) (4)

9、 (5)35. 關(guān)于OLAP和OLTP的區(qū)別描述,不正確的是: (d)A. OLAP主要是關(guān)于如何理解聚集的大量不同的數(shù)據(jù).它與OTAP應(yīng)用程序不同.B. 與OLAP應(yīng)用程序不同,OLTP應(yīng)用程序包含大量相對簡單的事務(wù).C. OLAP的特點(diǎn)在于事務(wù)量大,但事務(wù)內(nèi)容比較簡單且重復(fù)率高.D. OLAP是以數(shù)據(jù)倉庫為基礎(chǔ)的,但其最終數(shù)據(jù)來源與OLTP一樣均來自底層的數(shù)據(jù)庫系統(tǒng),兩者面對的用戶是相同的.36. OLAM技術(shù)一般簡稱為”數(shù)據(jù)聯(lián)機(jī)分析挖掘”,下面說法正確的是: (D)A. OLAP和OLAM都基于客戶機(jī)/服務(wù)器模式,只有后者有與用戶的交互性;B. 由于OLAM的立方體和用于OLAP的立方體

10、有本質(zhì)的區(qū)別.C. 基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合.D. OLAM服務(wù)器通過用戶圖形借口接收用戶的分析指令,在元數(shù)據(jù)的知道下,對超級立方體作一定的操作.37. 關(guān)于OLAP和OLTP的說法,下列不正確的是: (c)A. OLAP事務(wù)量大,但事務(wù)內(nèi)容比較簡單且重復(fù)率高.B. OLAP的最終數(shù)據(jù)來源與OLTP不一樣.C. OLTP面對的是決策人員和高層管理人員.D. OLTP以應(yīng)用為核心,是應(yīng)用驅(qū)動的.38. 設(shè)X=1,2,3是頻繁項(xiàng)集,則可由X產(chǎn)生_(C)_個關(guān)聯(lián)規(guī)則。A、4 B、5 C、6 D、7 40. 概念分層圖是_(B)_圖。A、無向無環(huán) B、有向無環(huán) C、有向有環(huán)

11、 D、無向有環(huán)41. 頻繁項(xiàng)集、頻繁閉項(xiàng)集、最大頻繁項(xiàng)集之間的關(guān)系是: (C)A、頻繁項(xiàng)集 頻繁閉項(xiàng)集 =最大頻繁項(xiàng)集B、頻繁項(xiàng)集 = 頻繁閉項(xiàng)集 最大頻繁項(xiàng)集C、頻繁項(xiàng)集 頻繁閉項(xiàng)集 最大頻繁項(xiàng)集D、頻繁項(xiàng)集 = 頻繁閉項(xiàng)集 = 最大頻繁項(xiàng)集44. 在圖集合中發(fā)現(xiàn)一組公共子結(jié)構(gòu),這樣的任務(wù)稱為 ( B )A、頻繁子集挖掘 B、頻繁子圖挖掘 C、頻繁數(shù)據(jù)項(xiàng)挖掘 D、頻繁模式挖掘45. 下列度量不具有反演性的是 (D)A、 系數(shù) B、幾率 C、Cohen度量 D、興趣因子46. 下列_(A)_不是將主觀信息加入到模式發(fā)現(xiàn)任務(wù)中的方法。A、與同一時期其他數(shù)據(jù)對比B、可視化C、基于模板的方法D、主觀

12、興趣度量47. 下面購物籃能夠提取的3-項(xiàng)集的最大數(shù)量是多少(C)ID 購買項(xiàng)1 牛奶,啤酒,尿布2 面包,黃油,牛奶3 牛奶,尿布,餅干4 面包,黃油,餅干5 啤酒,餅干,尿布6 牛奶,尿布,面包,黃油7 面包,黃油,尿布8 啤酒,尿布9 牛奶,尿布,面包,黃油10 啤酒,餅干A、1 B、2 C、3 D、448. 以下哪些算法是分類算法,A,DBSCAN B,C4.5 C,K-Mean D,EM (B)49. 以下哪些分類方法可以較好地避免樣本的不平衡問題, A,KNN B,SVM C,Bayes D,神經(jīng)網(wǎng)絡(luò) (A) 50. 決策樹中不包含一下哪種結(jié)點(diǎn),A,根結(jié)點(diǎn)(root node) B

13、,內(nèi)部結(jié)點(diǎn)(internal node) C,外部結(jié)點(diǎn)(external node) D,葉結(jié)點(diǎn)(leaf node) (C)51. 不純性度量中Gini計(jì)算公式為(其中c是類的個數(shù)) (A)A, B, C, D, (A)53. 以下哪項(xiàng)關(guān)于決策樹的說法是錯誤的 (C)A. 冗余屬性不會對決策樹的準(zhǔn)確率造成不利的影響 B. 子樹可能在決策樹中重復(fù)多次 C. 決策樹算法對于噪聲的干擾非常敏感 D. 尋找最佳決策樹是NP完全問題54. 在基于規(guī)則分類器的中,依據(jù)規(guī)則質(zhì)量的某種度量對規(guī)則排序,保證每一個測試記錄都是由覆蓋它的“最好的”規(guī)格來分類,這種方案稱為 (B)A. 基于類的排序方案 B. 基于

14、規(guī)則的排序方案 C. 基于度量的排序方案 D. 基于規(guī)格的排序方案。 55. 以下哪些算法是基于規(guī)則的分類器 (A) A. C4.5 B. KNN C. Na?ve Bayes D. ANN56. 如果規(guī)則集R中不存在兩條規(guī)則被同一條記錄觸發(fā),則稱規(guī)則集R中的規(guī)則為(C);A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)則57. 如果對屬性值的任一組合,R中都存在一條規(guī)則加以覆蓋,則稱規(guī)則集R中的規(guī)則為(B)A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)則58. 如果規(guī)則集中的規(guī)則按照優(yōu)先級降序排列,則稱規(guī)則集是 (D)A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)

15、則59. 如果允許一條記錄觸發(fā)多條分類規(guī)則,把每條被觸發(fā)規(guī)則的后件看作是對相應(yīng)類的一次投票,然后計(jì)票確定測試記錄的類標(biāo)號,稱為(A) A, 無序規(guī)則 B,窮舉規(guī)則 C, 互斥規(guī)則 D,有序規(guī)則60. 考慮兩隊(duì)之間的足球比賽:隊(duì)0和隊(duì)1。假設(shè)65%的比賽隊(duì)0勝出,剩余的比賽隊(duì)1獲勝。隊(duì)0獲勝的比賽中只有30%是在隊(duì)1的主場,而隊(duì)1取勝的比賽中75%是主場獲勝。如果下一場比賽在隊(duì)1的主場進(jìn)行隊(duì)1獲勝的概率為 (C)A,0.75 B,0.35 C,0.4678 D, 0.573861. 以下關(guān)于人工神經(jīng)網(wǎng)絡(luò)(ANN)的描述錯誤的有 (A)A,神經(jīng)網(wǎng)絡(luò)對訓(xùn)練數(shù)據(jù)中的噪聲非常魯棒 B,可以處理冗余特征

16、C,訓(xùn)練ANN是一個很耗時的過程 D,至少含有一個隱藏層的多層神經(jīng)網(wǎng)絡(luò)62. 通過聚集多個分類器的預(yù)測來提高分類準(zhǔn)確率的技術(shù)稱為 (A) A,組合(ensemble) B,聚集(aggregate) C,合并(combination) D,投票(voting)63. 簡單地將數(shù)據(jù)對象集劃分成不重疊的子集,使得每個數(shù)據(jù)對象恰在一個子集中,這種聚類類型稱作( B ) A、層次聚類 B、劃分聚類 C、非互斥聚類 D、模糊聚類64. 在基本K均值算法里,當(dāng)鄰近度函數(shù)采用( A )的時候,合適的質(zhì)心是簇中各點(diǎn)的中位數(shù)。 A、曼哈頓距離 B、平方歐幾里德距離 C、余弦距離 D、Bregman散度 65.(

17、 C )是一個觀測值,它與其他觀測值的差別如此之大,以至于懷疑它是由不同的機(jī)制產(chǎn)生的。 A、邊界點(diǎn) B、質(zhì)心 C、離群點(diǎn) D、核心點(diǎn)66. BIRCH是一種( B )。 A、分類器 B、聚類算法 C、關(guān)聯(lián)分析算法 D、特征選擇算法67. 檢測一元正態(tài)分布中的離群點(diǎn),屬于異常檢測中的基于( A )的離群點(diǎn)檢測。 A、統(tǒng)計(jì)方法 B、鄰近度 C、密度 D、聚類技術(shù)68.( C )將兩個簇的鄰近度定義為不同簇的所有點(diǎn)對的平均逐對鄰近度,它是一種凝聚層次聚類技術(shù)。 A、MIN(單鏈) B、MAX(全鏈) C、組平均 D、Ward方法69.( D )將兩個簇的鄰近度定義為兩個簇合并時導(dǎo)致的平方誤差的增量,

18、它是一種凝聚層次聚類技術(shù)。 A、MIN(單鏈) B、MAX(全鏈) C、組平均 D、Ward方法70. DBSCAN在最壞情況下的時間復(fù)雜度是( B )。 A、O(m) B、O(m2) C、O(log m) D、O(m*log m)71. 在基于圖的簇評估度量表里面,如果簇度量為proximity(Ci , C),簇權(quán)值為mi ,那么它的類型是( C )。 A、基于圖的凝聚度 B、基于原型的凝聚度 C、基于原型的分離度 D、基于圖的凝聚度和分離度72. 關(guān)于K均值和DBSCAN的比較,以下說法不正確的是( A )。 A、K均值丟棄被它識別為噪聲的對象,而DBSCAN一般聚類所有對象。 B、K均

19、值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念。 C、K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇。 D、K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會合并有重疊的簇。73. 以下是哪一個聚類算法的算法流程:構(gòu)造k最近鄰圖。使用多層圖劃分算法劃分圖。repeat:合并關(guān)于相對互連性和相對接近性而言,最好地保持簇的自相似性的簇。until:不再有可以合并的簇。( C )。 A、MST B、OPOSSUM C、Chameleon D、JarvisPatrick(JP)74. 考慮這么一種情況:一個對象碰巧與另一個對象相對

20、接近,但屬于不同的類,因?yàn)檫@兩個對象一般不會共享許多近鄰,所以應(yīng)該選擇( D )的相似度計(jì)算方法。 A、平方歐幾里德距離 B、余弦距離 C、直接相似度 D、共享最近鄰75. 以下屬于可伸縮聚類算法的是( A )。A、CURE B、DENCLUE C、CLIQUE D、OPOSSUM76. 以下哪個聚類算法不是屬于基于原型的聚類( D )。 A、模糊c均值 B、EM算法 C、SOM D、CLIQUE77. 關(guān)于混合模型聚類算法的優(yōu)缺點(diǎn),下面說法正確的是( B )。 A、當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時,混合模型也能很好地處理。 B、混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶?/p>

21、種類型的分布。 C、混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇。 D、混合模型在有噪聲和離群點(diǎn)時不會存在問題。78. 以下哪個聚類算法不屬于基于網(wǎng)格的聚類算法( D )。 A、STING B、WaveCluster C、MAFIA D、BIRCH79. 一個對象的離群點(diǎn)得分是該對象周圍密度的逆。這是基于( C )的離群點(diǎn)定義。 A概率 B、鄰近度 C、密度 D、聚類80. 下面關(guān)于JarvisPatrick(JP)聚類算法的說法不正確的是( D )。 A、JP聚類擅長處理噪聲和離群點(diǎn),并且能夠處理不同大小、形狀和密度的簇。 B、JP算法對高維數(shù)據(jù)效果良好,尤其擅長發(fā)現(xiàn)強(qiáng)相關(guān)對象的緊致簇。 C、JP

22、聚類是基于SNN相似度的概念。 D、JP聚類的基本時間復(fù)雜度為O(m)。二、 多選題1. 通過數(shù)據(jù)挖掘過程所推倒出的關(guān)系和摘要經(jīng)常被稱為:(A B) A. 模型 B. 模式 C. 模范 D. 模具2 尋找數(shù)據(jù)集中的關(guān)系是為了尋找精確、方便并且有價(jià)值地總結(jié)了數(shù)據(jù)的某一特征的表示,這個過程包括了以下哪些步驟? (A B C D)A. 決定要使用的表示的特征和結(jié)構(gòu)B. 決定如何量化和比較不同表示擬合數(shù)據(jù)的好壞C. 選擇一個算法過程使評分函數(shù)最優(yōu)D. 決定用什么樣的數(shù)據(jù)管理原則以高效地實(shí)現(xiàn)算法。3. 數(shù)據(jù)挖掘的預(yù)測建模任務(wù)主要包括哪幾大類問題? (A B) A. 分類 B. 回歸 C. 模式發(fā)現(xiàn) D.

23、 模式匹配4. 數(shù)據(jù)挖掘算法的組件包括:(A B C D) A. 模型或模型結(jié)構(gòu) B. 評分函數(shù) C. 優(yōu)化和搜索方法 D. 數(shù)據(jù)管理策略5. 以下哪些學(xué)科和數(shù)據(jù)挖掘有密切聯(lián)系?(A D) A. 統(tǒng)計(jì) B. 計(jì)算機(jī)組成原理 C. 礦產(chǎn)挖掘 D. 人工智能6. 在現(xiàn)實(shí)世界的數(shù)據(jù)中,元組在某些屬性上缺少值是常有的。描述處理該問題的各種方法有: ()A忽略元組 C使用一個全局常量填充空缺值B使用屬性的平均值填充空缺值 D使用與給定元組屬同一類的所有樣本的平均值 E使用最可能的值填充空缺值7.下面哪些屬于可視化高維數(shù)據(jù)技術(shù) ()A 矩陣 B 平行坐標(biāo)系 C星形坐標(biāo) D散布圖 E Chernoff臉8.

24、 對于數(shù)據(jù)挖掘中的原始數(shù)據(jù),存在的問題有: ()A 不一致 B重復(fù) C不完整 D 含噪聲 E 維度高 9.下列屬于不同的有序數(shù)據(jù)的有:()A 時序數(shù)據(jù) B 序列數(shù)據(jù) C時間序列數(shù)據(jù) D事務(wù)數(shù)據(jù) E空間數(shù)據(jù) 10.下面屬于數(shù)據(jù)集的一般特性的有:( B C D)A 連續(xù)性 B 維度 C稀疏性 D 分辨率 E 相異性11. 下面屬于維歸約常用的線性代數(shù)技術(shù)的有: (A C)A 主成分分析 B 特征提取 C 奇異值分解 D特征加權(quán) E 離散化12. 下面列出的條目中,哪些是數(shù)據(jù)倉庫的基本特征: (ACD)A. 數(shù)據(jù)倉庫是面向主題的 B. 數(shù)據(jù)倉庫的數(shù)據(jù)是集成的 C. 數(shù)據(jù)倉庫的數(shù)據(jù)是相對穩(wěn)定的 D.

25、數(shù)據(jù)倉庫的數(shù)據(jù)是反映歷史變化的 E. 數(shù)據(jù)倉庫是面向事務(wù)的13. 以下各項(xiàng)均是針對數(shù)據(jù)倉庫的不同說法,你認(rèn)為正確的有(BCDE )。A數(shù)據(jù)倉庫就是數(shù)據(jù)庫B數(shù)據(jù)倉庫是一切商業(yè)智能系統(tǒng)的基礎(chǔ)C數(shù)據(jù)倉庫是面向業(yè)務(wù)的,支持聯(lián)機(jī)事務(wù)處理(OLTP)D數(shù)據(jù)倉庫支持決策而非事務(wù)處理E數(shù)據(jù)倉庫的主要目標(biāo)就是幫助分析,做長期性的戰(zhàn)略制定14. 數(shù)據(jù)倉庫在技術(shù)上的工作過程是: (ABCD)A. 數(shù)據(jù)的抽取 B. 存儲和管理 C. 數(shù)據(jù)的表現(xiàn)D. 數(shù)據(jù)倉庫設(shè)計(jì) E. 數(shù)據(jù)的表現(xiàn)15. 聯(lián)機(jī)分析處理包括以下哪些基本分析功能? (BCD)A. 聚類 B. 切片 C. 轉(zhuǎn)軸 D. 切塊 E. 分類16. 利用Aprior

26、i算法計(jì)算頻繁項(xiàng)集可以有效降低計(jì)算頻繁集的時間復(fù)雜度。在以下的購物籃中產(chǎn)生支持度不小于3的候選3-項(xiàng)集,在候選2-項(xiàng)集中需要剪枝的是(BD)ID 項(xiàng)集1 面包、牛奶2 面包、尿布、啤酒、雞蛋3 牛奶、尿布、啤酒、可樂4 面包、牛奶、尿布、啤酒5 面包、牛奶、尿布、可樂A、啤酒、尿布 B、啤酒、面包 C、面包、尿布 D、啤酒、牛奶17. 下表是一個購物籃,假定支持度閾值為40%,其中_(A D)_是頻繁閉項(xiàng)集。TID 項(xiàng)1 abc2 abcd3 bce4 acde5 deA、abc B、adC、cd D、de18. Apriori算法的計(jì)算復(fù)雜度受_(ABCD)?_影響。A、支持度閥值 B、項(xiàng)數(shù)

27、(維度)C、事務(wù)數(shù) D、事務(wù)平均寬度19. 非頻繁模式_(AD)_A、其支持度小于閾值 B、都是不讓人感興趣的C、包含負(fù)模式和負(fù)相關(guān)模式 D、對異常數(shù)據(jù)項(xiàng)敏感20. 以下屬于分類器評價(jià)或比較尺度的有: A,預(yù)測準(zhǔn)確度 B,召回率 C,模型描述的簡潔度 D,計(jì)算復(fù)雜度 (ACD)21. 在評價(jià)不平衡類問題分類的度量方法有如下幾種,A,F1度量 B,召回率(recall) C,精度(precision) D,真正率(ture positive rate,TPR) (ABCD)22. 貝葉斯信念網(wǎng)絡(luò)(BBN)有如下哪些特點(diǎn),A,構(gòu)造網(wǎng)絡(luò)費(fèi)時費(fèi)力 B,對模型的過分問題非常魯棒 C,貝葉斯網(wǎng)絡(luò)不適合處理

28、不完整的數(shù)據(jù) D,網(wǎng)絡(luò)結(jié)構(gòu)確定后,添加變量相當(dāng)麻煩 (AB)23. 如下哪些不是最近鄰分類器的特點(diǎn),A,它使用具體的訓(xùn)練實(shí)例進(jìn)行預(yù)測,不必維護(hù)源自數(shù)據(jù)的模型 B,分類一個測試樣例開銷很大 C,最近鄰分類器基于全局信息進(jìn)行預(yù)測 D,可以生產(chǎn)任意形狀的決策邊界 (C)24. 如下那些不是基于規(guī)則分類器的特點(diǎn),A,規(guī)則集的表達(dá)能力遠(yuǎn)不如決策樹好 B,基于規(guī)則的分類器都對屬性空間進(jìn)行直線劃分,并將類指派到每個劃分 C,無法被用來產(chǎn)生更易于解釋的描述性模型 D,非常適合處理類分布不平衡的數(shù)據(jù)集 (AC)25. 以下屬于聚類算法的是( ABD )。 A、K均值 B、DBSCAN C、Apriori D、J

29、arvis-Patrick(JP)26.( CD )都屬于簇有效性的監(jiān)督度量。 A、輪廓系數(shù) B、共性分類相關(guān)系數(shù) C、熵 D、F度量27. 簇有效性的面向相似性的度量包括( BC )。 A、精度 B、Rand統(tǒng)計(jì)量 C、Jaccard系數(shù) D、召回率28.( ABCD )這些數(shù)據(jù)特性都是對聚類分析具有很強(qiáng)影響的。 A、高維性 B、規(guī)模 C、稀疏性 D、噪聲和離群點(diǎn)29. 在聚類分析當(dāng)中,( AD )等技術(shù)可以處理任意形狀的簇。 A、MIN(單鏈) B、MAX(全鏈) C、組平均 D、Chameleon30. ( AB )都屬于分裂的層次聚類算法。 A、二分K均值 B、MST C、Chamel

30、eon D、組平均三、 判斷題1. 數(shù)據(jù)挖掘的主要任務(wù)是從數(shù)據(jù)中發(fā)現(xiàn)潛在的規(guī)則,從而能更好的完成描述數(shù)據(jù)、預(yù)測數(shù)據(jù)等任務(wù)。 (對)2. 數(shù)據(jù)挖掘的目標(biāo)不在于數(shù)據(jù)采集策略,而在于對于已經(jīng)存在的數(shù)據(jù)進(jìn)行模式的發(fā)掘。(對)3. 圖挖掘技術(shù)在社會網(wǎng)絡(luò)分析中扮演了重要的角色。(對)4. 模式為對數(shù)據(jù)集的全局性總結(jié),它對整個測量空間的每一點(diǎn)做出描述;模型則對變量變化空間的一個有限區(qū)域做出描述。(錯)5. 尋找模式和規(guī)則主要是對數(shù)據(jù)進(jìn)行干擾,使其符合某種規(guī)則以及模式。(錯)6. 離群點(diǎn)可以是合法的數(shù)據(jù)對象或者值。(對)7. 離散屬性總是具有有限個值。(錯)8. 噪聲和偽像是數(shù)據(jù)錯誤這一相同表述的兩種叫法。(

31、錯)9. 用于分類的離散化方法之間的根本區(qū)別在于是否使用類信息。(對)10. 特征提取技術(shù)并不依賴于特定的領(lǐng)域。(錯)11. 序列數(shù)據(jù)沒有時間戳。(對)12. 定量屬性可以是整數(shù)值或者是連續(xù)值。(對)13. 可視化技術(shù)對于分析的數(shù)據(jù)類型通常不是專用性的。(錯)14. DSS主要是基于數(shù)據(jù)倉庫.聯(lián)機(jī)數(shù)據(jù)分析和數(shù)據(jù)挖掘技術(shù)的應(yīng)用。(對)15. OLAP技術(shù)側(cè)重于把數(shù)據(jù)庫中的數(shù)據(jù)進(jìn)行分析、轉(zhuǎn)換成輔助決策信息,是繼數(shù)據(jù)庫技術(shù)發(fā)展之后迅猛發(fā)展起來的一種新技術(shù)。 (對)16. 商業(yè)智能系統(tǒng)與一般交易系統(tǒng)之間在系統(tǒng)設(shè)計(jì)上的主要區(qū)別在于:后者把結(jié)構(gòu)強(qiáng)加于商務(wù)之上,一旦系統(tǒng)設(shè)計(jì)完畢,其程序和規(guī)則不會輕易改變;而前者則是一個學(xué)習(xí)型系統(tǒng),能自動適應(yīng)商務(wù)不斷變化的要求。 (對)17. 數(shù)據(jù)倉庫中間層OLAP服務(wù)器只能采用關(guān)系型OLAP (錯)18數(shù)據(jù)倉庫系統(tǒng)的組成部分包括數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論