




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、質(zhì)點運動學質(zhì)點運動學質(zhì)點與質(zhì)點系動力學質(zhì)點與質(zhì)點系動力學剛體力學基礎剛體力學基礎力學力學物體位置隨時間的變化物體位置隨時間的變化力學力學運動學運動學動力學動力學(即在什么條件下,作什么樣的運動)(即在什么條件下,作什么樣的運動)經(jīng)典力學經(jīng)典力學宏觀宏觀低速低速研究研究機械運動機械運動的規(guī)律的規(guī)律研究如何研究如何描述描述物體的機械運動物體的機械運動研究機械運動的研究機械運動的內(nèi)在規(guī)律內(nèi)在規(guī)律尺寸不太小尺寸不太?。ㄅc原子、分子比)(與原子、分子比)速度不太大速度不太大(與光速比與光速比)第一章第一章質(zhì)點的運動質(zhì)點的運動 時間時間 空間空間預習要點預習要點閱讀教材附錄閱讀教材附錄1中的一、二、四以及
2、附錄中的一、二、四以及附錄4中的四中的四.領會位置矢量、位移、速度、加速度的定義及相領會位置矢量、位移、速度、加速度的定義及相互關系;認識它們在描述質(zhì)點運動中所起的作用互關系;認識它們在描述質(zhì)點運動中所起的作用.1. 運動方程的含義和表達式是什么?根據(jù)運動方程運動方程的含義和表達式是什么?根據(jù)運動方程如何求速度和加速度?如何求速度和加速度?1. 1. 參考系參考系2. 2. 運動描述的相對性運動描述的相對性 選取的參考系不同,對物體運動情況的描述選取的參考系不同,對物體運動情況的描述不同,這就是運動描述的相對性不同,這就是運動描述的相對性. .3. 3. 坐標系坐標系 在選定的參考物上建立固定
3、的坐標系,可在選定的參考物上建立固定的坐標系,可精確描述物體的運動精確描述物體的運動. . 參考系參考系: 為確定物理位置和描述物體運動而為確定物理位置和描述物體運動而選為依據(jù)的一個或一組彼此相對靜止的物體選為依據(jù)的一個或一組彼此相對靜止的物體.xyz0(x,y,z)ijkr0 x rPre er xyzPA AnB Bn0s 0AB直角坐標系(直角坐標系( x , y , z ), 極坐標系(極坐標系( r, ),柱坐標系(柱坐標系( , , z ) , 自然坐標系自然坐標系 ( s ).1. 1. 位置矢量位置矢量222r rxyz 確定質(zhì)點確定質(zhì)點P某一時刻在某一時刻在坐標系里的位置的物
4、理量坐標系里的位置的物理量稱位置矢量稱位置矢量, 簡稱位矢,簡稱位矢,用用 表示表示.r位矢位矢 的值為的值為rxyz0(x,y,z)ijkk zj yi xrxyz0(x,y,z)ijkr 位矢位矢 的方向余弦為的方向余弦為rrycosrxcosrzcos1222 coscoscos2. 2. 位移位移 經(jīng)過時間間隔經(jīng)過時間間隔 后后, 質(zhì)質(zhì) 點位置矢量發(fā)生變化點位置矢量發(fā)生變化, 由始點由始點A指向終點指向終點B的有向線段的有向線段AB稱稱為點為點A到到B的位移的位移. tABrrrAB描寫質(zhì)點位置描寫質(zhì)點位置變化變化的物理量的物理量. .在直角坐標系在直角坐標系 中中, 其位移的表達式為
5、其位移的表達式為OxyzkzzjyyixxrABABAB)()()(BBrArAroxyz1. 1. 位移的物理意義位移的物理意義 確切反映物體在空間位置的變化確切反映物體在空間位置的變化, , 與路徑無關,與路徑無關,只決定于質(zhì)點的只決定于質(zhì)點的始末始末位置,是描述位置,是描述狀態(tài)變化狀態(tài)變化的物理量的物理量. .2. 2. 位移與路程位移與路程s)(1tr1P)(2tr2PrxyOzs P1P2兩點間的路程是不兩點間的路程是不唯一的唯一的, ,可以是可以是 或或 , ,而而位移位移 是是唯一唯一的的. .rss 一般情況位移大小不等于一般情況位移大小不等于路程,即路程,即 ;只有當;只有當
6、質(zhì)點做單方向的質(zhì)點做單方向的直線運動直線運動時,時,路程和位移的大小才相等路程和位移的大小才相等. .sr3. 3. 速度速度 平均速度平均速度 )()(trttrr 在在 時間內(nèi)時間內(nèi), 質(zhì)點從點質(zhì)點從點A 運運動到點動到點 B, 其位移為其位移為t 物體的位移與發(fā)生這段位移物體的位移與發(fā)生這段位移所用的時間之比所用的時間之比. .trv 平均速度平均速度 與與 同方向同方向.rv描寫物體運動快慢和位置變化方向的物理量描寫物體運動快慢和位置變化方向的物理量. .r)(ttr)(trs時間內(nèi)時間內(nèi), 質(zhì)點的平均速度質(zhì)點的平均速度txyzOA*B*ttrttr)()(瞬時速度瞬時速度 當質(zhì)點作曲
7、線運動時當質(zhì)點作曲線運動時, 質(zhì)點在某一點的速度方向質(zhì)點在某一點的速度方向就是沿該點軌道曲線的切線方向就是沿該點軌道曲線的切線方向. 當當 時平均速度的極限叫做瞬時速度,簡時平均速度的極限叫做瞬時速度,簡稱速度,即在某時刻或某位置處質(zhì)點位矢對時間的變稱速度,即在某時刻或某位置處質(zhì)點位矢對時間的變化率化率.0ttrtrtddlim0vsrdd當當 時時,0ttddets vB)(ttr)(trAsxyOzdtrd kdtdzjdtdyidtdx kjizyx222zyx速度的大小表示為速度的大小表示為直角坐標中的速度:直角坐標中的速度:222ddd()()()dddxyztttvvddstv瞬時
8、速率瞬時速率瞬時速率瞬時速率ddstvtddets vv速度速度 的大小稱為速率的大小稱為速率.vxvcosvvzcosvvycos速度的方向由下式?jīng)Q定速度的方向由下式?jīng)Q定平均加速度平均加速度BvBAvBvv與與 同方向同方向.va反映速度變化快慢和速度方向變化的物理量反映速度變化快慢和速度方向變化的物理量.xyOatv 某段時間內(nèi)某段時間內(nèi), 單位時間的速單位時間的速度增量即平均加速度度增量即平均加速度.4. 4. 加速度加速度AvA瞬時加速度瞬時加速度22ddddrattv0 t時平均加速度的極限時平均加速度的極限.0dlimdtatt vv,xyzaa ia ja k222222dddd
9、ddddddddxxyyxattyattattzzvvvz加速度大小加速度大小222xyzaaaa在直角坐標系中在直角坐標系中加速度方向加速度方向aaiax),cos(aajay),cos(aakaz),cos(ktzjtyitxtr)()()()()(txx )(tyy )(tzz 分量式分量式 從運動方程中消去參數(shù)從運動方程中消去參數(shù)t得到質(zhì)點位置坐標之間的得到質(zhì)點位置坐標之間的關系式稱為軌跡方程關系式稱為軌跡方程. 0),(zyxf質(zhì)點位置矢量隨時間變化的函數(shù)關系就是運動方程質(zhì)點位置矢量隨時間變化的函數(shù)關系就是運動方程. .例:已知質(zhì)點的運動方程是例:已知質(zhì)點的運動方程是 , 式中式中R
10、 、 是常數(shù)是常數(shù).j tRi tRrsincos(1) 運動學方程的分量式是運動學方程的分量式是 tRytRxsin,cosxPt xyOR),(yx 由由 中消去時間參量中消去時間參量t, tRytRxsin,cos222Ryxy求求: (1)質(zhì)點軌道方程;)質(zhì)點軌道方程; (2 2)質(zhì)點的速度和加速度)質(zhì)點的速度和加速度. .得到軌跡方程得到軌跡方程解:解:)(ta)(tr求導求導求導求導積分積分積分積分( ) tv質(zhì)點運動學兩類基本問題質(zhì)點運動學兩類基本問題由質(zhì)點的運動方程求得質(zhì)點在任一時刻的速度和加由質(zhì)點的運動方程求得質(zhì)點在任一時刻的速度和加速度(通過求導計算);速度(通過求導計算)
11、;已知質(zhì)點的加速度以及初始速度和初始位置已知質(zhì)點的加速度以及初始速度和初始位置, , 求質(zhì)求質(zhì)點速度及其運動方程(通過積分計算)點速度及其運動方程(通過積分計算). .例:已知質(zhì)點的運動方程是例:已知質(zhì)點的運動方程是 , 式中式中R 、 是常數(shù)是常數(shù).j tRi tRrsincos(1) 運動學方程的分量式是運動學方程的分量式是 tRytRxsin,cosxPt xyOR),(yx 由由 中消去時間參量中消去時間參量t, tRytRxsin,cos222Ryxy求求: (1)質(zhì)點軌道方程;)質(zhì)點軌道方程; (2 2)質(zhì)點的速度和加速度)質(zhì)點的速度和加速度. .得到軌跡方程得到軌跡方程解:解:t
12、RtytRtxycosddsinddvvx(2 2)將)將 對時間求導對時間求導 tRytRxsin,cosRj tRi tRjaiaayx22)sincos(R22xvvvytRtatRtayysinddcosdd22vvxx2Raaa22xy 222RaaayxRv2例:設質(zhì)點沿例:設質(zhì)點沿x軸作勻變速直線運動,加速度軸作勻變速直線運動,加速度 不隨時間不隨時間變化,初位置為變化,初位置為x0,初速度為,初速度為 . . 試用積分法求出質(zhì)點試用積分法求出質(zhì)點的速度公式和運動方程的速度公式和運動方程. .0va解:因為質(zhì)點做直線運動解:因為質(zhì)點做直線運動,taddv所以所以taddv對上式兩
13、邊做積分運算對上式兩邊做積分運算,taddv得得1Cat v將初始條件帶入上式將初始條件帶入上式, 確定積分常數(shù)確定積分常數(shù)01vC 所以速度公式為所以速度公式為at0vv由速度定義由速度定義, 有有txddv所以所以tattxd)(dd0vv對上式兩邊積分運算對上式兩邊積分運算:tatxd)(d0v得得22021Cattx v將初始條件帶入上式將初始條件帶入上式, 確定積分常數(shù)確定積分常數(shù)02xC20021attxxv運動方程為運動方程為例例:如圖所示湖中有一小船,有人用繩繞過岸上如圖所示湖中有一小船,有人用繩繞過岸上h高高度處的定滑輪拉湖上的船向岸邊運動,設該人以度處的定滑輪拉湖上的船向岸
14、邊運動,設該人以勻速率勻速率v0 收繩,繩原長收繩,繩原長 l0,湖水靜止,則小船的,湖水靜止,則小船的運動是。運動是。解:任意時刻t,船的位置為2200)(htvlx對上式對時間求導,得小船的運動速度為cos)()(02200000vhtvlvtvldtdxv再將速度對時間求導,得加速度為 3203220232200220tan)(hvxhvhtvlhvdtdva負號說明小船是向岸邊靠近的,做變加速直線運動。預習要點預習要點領會切向加速度和法向加速度的概念及物理意義;領會切向加速度和法向加速度的概念及物理意義;理解切向加速度、法向加速度和總加速度的關系理解切向加速度、法向加速度和總加速度的關
15、系.1. 領會圓周運動中角位移、角速度和角加速度的概念領會圓周運動中角位移、角速度和角加速度的概念以及它們之間的關系以及它們之間的關系. 了解線量和角量的關系了解線量和角量的關系.*3. 認識同一質(zhì)點在不同坐標系中的位置矢量關系式、認識同一質(zhì)點在不同坐標系中的位置矢量關系式、速度關系式和加速度關系式速度關系式和加速度關系式. 自然坐標系自然坐標系 一、一、切向加速度和法向加速度切向加速度和法向加速度 將質(zhì)點運動軌跡曲線作為一維坐標的軸線將質(zhì)點運動軌跡曲線作為一維坐標的軸線自然坐標。自然坐標。 規(guī)定:規(guī)定:nnsoPnQ snnsoPnQ snQnQ s282)圓周運動的切向加速度和法向加速度)
16、圓周運動的切向加速度和法向加速度vnvvnv282)vtat 0limtnt 0limtttnt00limlimCEABvnvDvFAvBvtvat0limtvantn0lim令 ,令 O切向加速度切向加速度 則有則有aaantvat0limdtdv方向:方向:A點處圓周的切線方向點處圓周的切線方向大?。捍笮。呵邢蚣铀俣仁敲枋鏊俣却笮∽兓募铀俣确至壳邢蚣铀俣仁敲枋鏊俣却笮∽兓募铀俣确至坑蓤D中所給的幾何關系,有OABCDF因此RABvvnRvtABRvtvantn20limlim法向加速度 勻速圓周運動勻速圓周運動 ( =常數(shù)常數(shù))0 aCRan 2 020ndtda 22222 dtdaa
17、an aatgnan10 的夾角與推廣至一般的曲線運動一條任意的曲線都可以看成是許多圓心和半徑各不相同的無限小段圓弧組合而成tttttd)(dlim)(03. 角速度:角速度:描述質(zhì)點轉(zhuǎn)動快慢和方向的物理量描述質(zhì)點轉(zhuǎn)動快慢和方向的物理量. .1. 角位置角位置:)(txyorAB4. 角加速度:角加速度:220ddddlimtttt2. 角位移:質(zhì)點轉(zhuǎn)過的角度角位移:質(zhì)點轉(zhuǎn)過的角度 ,單位,單位rad(弧度)(弧度).對于圓周對于圓周運動運動200021tttrs速度與角速度的關系式速度與角速度的關系式xyorABsr dddrsrtrddtrddv切向加速度切向加速度:rtrtaddddtv
18、法向加速度法向加速度:rra22nv同一物體的運動,在不同參考系中,對其描述不同同一物體的運動,在不同參考系中,對其描述不同.Rrr uvvtRtrtrdddddduvvtrdd: :相對速度相對速度, ,tRdd: :牽連速度牽連速度. . ruxyyzzo orMRx 一個動點一個動點M, 兩個參兩個參考系考系, , 絕對參考系絕對參考系K, ,相相對參考系對參考系K , K系相對系相對K系以速度系以速度 作平動作平動.u: :絕對速度絕對速度, ,trdd*加速度關系加速度關系tuttddddddvv牽aaaaa有有 說明在相對作勻速直線運動的參考系中觀察同說明在相對作勻速直線運動的參考
19、系中觀察同一質(zhì)點的運動時,所測得的加速度是一質(zhì)點的運動時,所測得的加速度是相同相同的的.如果兩個參考系作相對勻速直線運動,即如果兩個參考系作相對勻速直線運動,即 為常量,為常量,u0ddtu則則 ,預習要點預習要點什么是慣性參考系什么是慣性參考系? ?了解伽利略坐標變換建立的依據(jù)以及經(jīng)典時空觀念了解伽利略坐標變換建立的依據(jù)以及經(jīng)典時空觀念的基本內(nèi)容的基本內(nèi)容. .狹義相對論的產(chǎn)生有怎樣的歷史背景狹義相對論的產(chǎn)生有怎樣的歷史背景? ? 狹義相對論狹義相對論的兩條基本原理是什么的兩條基本原理是什么? ?1.1. 了解洛倫茲變換了解洛倫茲變換. .0NFPFamFPFN02. 2. 車廂參考系:車廂
20、參考系:小球加速度為小球加速度為a 小球靜止,因此小球的加小球靜止,因此小球的加速度為零,而它受的合力為零,速度為零,而它受的合力為零,這符合牛頓第二定律這符合牛頓第二定律. . 相對于作加速運動的車廂參考系,牛頓第二定律相對于作加速運動的車廂參考系,牛頓第二定律不再成立不再成立. .a 在車廂中光滑桌面上有一個鋼球在車廂中光滑桌面上有一個鋼球, ,車廂以加速車廂以加速度向右前進度向右前進. .a1. 1. 地面參考系:地面參考系:PNF 定義:適用牛頓運動定律的參考系叫做定義:適用牛頓運動定律的參考系叫做慣性參考慣性參考系系;反之,叫做非慣性參考系;反之,叫做非慣性參考系 . .慣性系的性質(zhì)
21、慣性系的性質(zhì) 相對于一慣性系作勻速直線運動的參考系都是慣相對于一慣性系作勻速直線運動的參考系都是慣性系性系. . 反之,相對于一慣性系作加速運動的參考系一反之,相對于一慣性系作加速運動的參考系一定不是慣性參考系,即一定是非慣性參考系定不是慣性參考系,即一定是非慣性參考系. .慣性系的判斷慣性系的判斷 判斷是否是慣性系,要根據(jù)實驗觀察判斷是否是慣性系,要根據(jù)實驗觀察. . 嚴格的慣嚴格的慣性系是關于參考系的一種理想模型性系是關于參考系的一種理想模型. . 太陽參考系是一太陽參考系是一個很好的慣性系,通常近似取地面參考系為慣性參考個很好的慣性系,通常近似取地面參考系為慣性參考系系. .1. 1.
22、伽利略坐標變換伽利略坐標變換 考察兩個相對作勻速直線運動的參考系,兩者的考察兩個相對作勻速直線運動的參考系,兩者的坐標軸分別相互平行坐標軸分別相互平行. .oyzxKzyxoKxxutuP0t時時, ,xx0一個參考系靜止一個參考系靜止 K系,另系,另一個參考系沿一個參考系沿Ox軸以速度軸以速度 運動運動K系,系,u伽利略坐標變換公式伽利略坐標變換公式:txxuyy zz tt 同時性是絕對的同時性是絕對的 在在K系同時發(fā)生的兩個事件,在系同時發(fā)生的兩個事件,在K系中也是同時發(fā)系中也是同時發(fā)生的生的. .2. 2. 經(jīng)典時空觀經(jīng)典時空觀時間間隔是絕對不變量時間間隔是絕對不變量tt在在K系和和K
23、系中時間量度相同系中時間量度相同. .tt空間間隔是絕對不變量空間間隔是絕對不變量在在K系系和和K系中量度同一物體的長度是相同的系中量度同一物體的長度是相同的. .即即1212xxxx,11utxxutxx22 ll即即xx同理同理,yyzz21222zyxl21222zyxl所以所以3. 3. 經(jīng)典相對性原理經(jīng)典相對性原理由坐標變換公式對時間求二階導數(shù)由坐標變換公式對時間求二階導數(shù)xayyaazzaa aaamF amF經(jīng)典力學定律在伽利略變換下形式不變經(jīng)典力學定律在伽利略變換下形式不變. . 經(jīng)典(力學相對性原理)經(jīng)典(力學相對性原理):力學現(xiàn)象對于一切慣:力學現(xiàn)象對于一切慣性系來說,都遵
24、守同樣的規(guī)律;或者說,在研究力學性系來說,都遵守同樣的規(guī)律;或者說,在研究力學規(guī)律時,一切慣性系都是等價的規(guī)律時,一切慣性系都是等價的. .ttaxddddxxvv 電磁理論的基本規(guī)律電磁理論的基本規(guī)律-麥克斯韋方程組麥克斯韋方程組對對伽利略伽利略變換不具有不變性;經(jīng)典理論假定變換不具有不變性;經(jīng)典理論假定“以太以太”為絕對參考為絕對參考系,光波、地球皆相對以太作絕對運動,根據(jù)伽利略變系,光波、地球皆相對以太作絕對運動,根據(jù)伽利略變換,光波在地球上沿不同方向的速度應不同換,光波在地球上沿不同方向的速度應不同. .思考:思考:1. 什么時空能使麥克斯韋方程組具有不變性?什么時空能使麥克斯韋方程組
25、具有不變性?2. “以太以太” 是否存在?是否存在? 邁克耳孫邁克耳孫- -莫雷實驗表明:光在地球上沿不同方向莫雷實驗表明:光在地球上沿不同方向的傳播速度無差異的傳播速度無差異. .經(jīng)典物理理論經(jīng)典物理理論電磁現(xiàn)象實驗電磁現(xiàn)象實驗矛盾矛盾 洛倫茲提出,同一事件在洛倫茲提出,同一事件在K系和系和K系間的時空坐標系間的時空坐標關系為關系為系Kyyzz22)/(1/ cucuxtt2)/(1cuutxx系Kyyzz22)/(1/cucuxtt洛倫茲變換與電磁現(xiàn)象的實驗結(jié)果相一致洛倫茲變換與電磁現(xiàn)象的實驗結(jié)果相一致. .21(u/c)txvx令令2)/(11cu211) (utxx系Kyyzz)/ (
26、2cuxtt)(utxx系Kyyzz)/(2cuxtt1cu / 洛侖茲變換與電磁現(xiàn)象的實驗結(jié)果相一致洛侖茲變換與電磁現(xiàn)象的實驗結(jié)果相一致. . 1. 愛因斯坦相對性原理愛因斯坦相對性原理 所有慣性參考系中物理規(guī)律都是相同的,或者說所有慣性參考系中物理規(guī)律都是相同的,或者說, , 在所有慣性系中在所有慣性系中, ,物理定律的數(shù)學形式保持不變物理定律的數(shù)學形式保持不變. .2. 光速不變原理光速不變原理 在所有慣性系中,光在真空中的在所有慣性系中,光在真空中的速率相同速率相同,與慣,與慣性系之間的相對運動無關,也與光源、觀察者的運動性系之間的相對運動無關,也與光源、觀察者的運動無關無關. . 從
27、這兩條原理出發(fā),愛因斯坦推導出和洛倫茲變從這兩條原理出發(fā),愛因斯坦推導出和洛倫茲變換完全相同的時空坐標變換式,并指出:時間和空間換完全相同的時空坐標變換式,并指出:時間和空間及其時間、空間和物質(zhì)運動是緊密聯(lián)系而不可分割的,及其時間、空間和物質(zhì)運動是緊密聯(lián)系而不可分割的,時鐘的快慢和量尺的長短都要受運動狀態(tài)的影響時鐘的快慢和量尺的長短都要受運動狀態(tài)的影響. .1. 1. 時間、空間和物質(zhì)運動三者緊密聯(lián)系,不可分割時間、空間和物質(zhì)運動三者緊密聯(lián)系,不可分割. .2. 2. 同時性是相對的,在一個慣性系中同時發(fā)生的兩同時性是相對的,在一個慣性系中同時發(fā)生的兩個事件,相對另一個慣性系不同時;反之,在一
28、個慣個事件,相對另一個慣性系不同時;反之,在一個慣性系中不是同時發(fā)生的兩個事件,相對另一個慣性系性系中不是同時發(fā)生的兩個事件,相對另一個慣性系有可能同時有可能同時. .3. 3. 空間間隔與物體的運動有關,運動物體在運動方空間間隔與物體的運動有關,運動物體在運動方向上的長度發(fā)生縮短向上的長度發(fā)生縮短. .4. 4. 時間間隔與物體的運動有關,任何自然過程在相時間間隔與物體的運動有關,任何自然過程在相對其運動的慣性系中觀測與在相對其靜止的慣性系中對其運動的慣性系中觀測與在相對其靜止的慣性系中觀測相比,前者比后者的速度延緩觀測相比,前者比后者的速度延緩. . 在在K系中系中不同地點同時發(fā)生不同地點
29、同時發(fā)生的兩事件,它們的時空的兩事件,它們的時空坐標為坐標為事件事件 2 ),(222tzyx),(111tzyx事件事件 1這兩個事件在這兩個事件在K系的時空坐標為系的時空坐標為),(2222tzyx事件事件 2 ),(1111tzyx事件事件 1),(1122221xctxcttuu由洛倫茲變換由洛倫茲變換)(1222222xctxcttuu兩式相減,得兩式相減,得)(21212xxcttu 結(jié)論結(jié)論 :不同地點:不同地點發(fā)生的兩個事件,在其中一個發(fā)生的兩個事件,在其中一個慣性系中是慣性系中是同時同時的,的, 在另一慣性系中觀察則不同時,在另一慣性系中觀察則不同時,所以同時具有所以同時具有相對相對意義;只有在意義;只有在同一地點同一地點, 同一同一時時刻發(fā)生的兩個事件,在其他慣性系中觀察也是刻發(fā)生的兩個事件,在其他慣性系中觀察也是同時同時的的. 可見,在洛倫茲變換下,同時是相對的可見,在洛倫茲變換下,同時是相對的.標尺相對標尺相對K系靜止系靜止.),(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 4540-2023水產(chǎn)養(yǎng)殖業(yè)污染物控制技術規(guī)范
- 康復科醫(yī)療質(zhì)量管理職責
- 小學一年級數(shù)學知識鞏固計劃
- 人教版八年級物理實驗教學計劃評估
- 內(nèi)科急救醫(yī)療質(zhì)量與安全管理計劃
- 中小學教師心理健康知識普及心得體會
- 高校外語與普通話結(jié)合教學總結(jié)及改進措施
- 如何在職場中找到適合自己的職業(yè)道路
- 員工薪資福利與企業(yè)戰(zhàn)略目標一致性策略
- 如何在職場中展示個人潛力和才華
- 化妝品賞析與應用學習通超星期末考試答案章節(jié)答案2024年
- 第五單元《分數(shù)的意義》復習試題(單元測試)-2024-2025學年五年級上冊數(shù)學北師大版
- 學校食堂安全應急處置預案
- 班級規(guī)章 創(chuàng)造和諧
- 2024新能源光伏電站智慧型銅合金導體擠包絕緣電力電纜
- 2024年中國家具電商行業(yè)市場競爭格局及投資方向研究報告(智研咨詢)
- 中國現(xiàn)代文學史考試題庫及答案
- 煙葉烘烤特性及特殊煙葉烘烤技術培訓
- 物料報廢單完整版本
- 廣東省深圳市南山區(qū)2023-2024學年四年級下學期期末科學試題
- 01互聯(lián)網(wǎng)安全風險及其產(chǎn)生原因 教學設計 2023-2024學年蘇科版(2023)初中信息科技七年級下冊
評論
0/150
提交評論