版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2 .邏輯代數(shù)邏輯代數(shù)2.1 邏輯代數(shù)邏輯代數(shù) 2.2 邏輯函數(shù)的邏輯函數(shù)的卡諾圖卡諾圖化簡(jiǎn)法化簡(jiǎn)法 2.1.1 邏輯代數(shù)的基本定律和恒等式邏輯代數(shù)的基本定律和恒等式2.1 邏輯代數(shù)邏輯代數(shù)2.1.3 邏輯函數(shù)的變換及代數(shù)化簡(jiǎn)法邏輯函數(shù)的變換及代數(shù)化簡(jiǎn)法2.1.2 邏輯代數(shù)的基本規(guī)則邏輯代數(shù)的基本規(guī)則2.1 邏輯代數(shù)邏輯代數(shù)邏輯代數(shù)于邏輯代數(shù)于18541854年問世。年問世。邏輯變量:邏輯變量: 表示邏輯事件的變量,其對(duì)立狀態(tài)分別用邏輯表示邏輯事件的變量,其對(duì)立狀態(tài)分別用邏輯“1” 和和“0”表示。表示?;具壿嬤\(yùn)算:基本邏輯運(yùn)算: 與、或、非(與非、或非、與或非、異或、同或)與、或、非(與非
2、、或非、與或非、異或、同或)1 1、基本公式基本公式交換律:交換律: A + B = B + AA B = B A結(jié)合律:結(jié)合律:A + B + C = (A + B) + C A B C = (A B) C 分配律:分配律:A + BC = ( A + B )( A + C )A ( B + C ) = AB + AC A 1 = AA 0 = 0A + 0 = AA + 1 = 10 0、1 1律:律:A A = 0A + A = 1互補(bǔ)律:互補(bǔ)律:2.2.1.11.1邏輯代數(shù)的基本定律和恒等式邏輯代數(shù)的基本定律和恒等式重疊律重疊律:A + A = AA A = A反演律:反演律:AB =
3、 A + B A + B = A BAA BAB() ()ABACABCABAAAABA()吸收律吸收律 其它常用恒等式其它常用恒等式 ABACBCAB + ACABACBCDAB + AC2、基本公式的證明基本公式的證明例例 證明證明ABA BABA B,列出等式左、右邊表達(dá)式的值并進(jìn)行比較列出等式左、右邊表達(dá)式的值并進(jìn)行比較( (真值表證明法真值表證明法) )011 = 001+1=00 01 1110 = 101+0=00 11 0101 = 100+1=01 00 1100 = 110+0=11 10 0A+BA+BA B A BABA B 2.1.2 邏輯代數(shù)的基本規(guī)則邏輯代數(shù)的基本
4、規(guī)則 例如,已知等式 ,用函數(shù)Y=AC代替等式中的A,根據(jù)代入規(guī)則,等式仍然成立,即有:(1)代入規(guī)則:任何一個(gè)含有變量A的等式,如果將所有出現(xiàn)A的位置都用同一個(gè)邏輯函數(shù)代替,則等式仍然成立。這個(gè)規(guī)則稱為代入規(guī)則。BAABCBABACBAC)((2)反演規(guī)則:對(duì)于任何一個(gè)邏輯表達(dá)式Y(jié),如果將表達(dá)式中的所有“”換成“”,“”換成“”,“0”換成“1”,“1”換成“0”,那么所得到的表達(dá)式就是函數(shù)Y的反函數(shù)Y(或稱補(bǔ)函數(shù))。這個(gè)規(guī)則稱為反演規(guī)則。例如:EDCBAY)(EDCBAYEDCBAYEDCBAY(3)對(duì)偶規(guī)則:對(duì)于任何一個(gè)邏輯表達(dá)式Y(jié),如果將表達(dá)式中的所有“”換成“”,“”換成“”,“0”
5、換成“1”,“1”換成“0”,而,則可得到的一個(gè)新的函數(shù)表達(dá)式Y(jié),Y稱為Y的對(duì)偶函數(shù)。這個(gè)規(guī)則稱為對(duì)偶規(guī)則。例如:EDCBAY對(duì)偶規(guī)則的意義在于對(duì)偶規(guī)則的意義在于:如果兩個(gè)函數(shù)相等,則它們的對(duì)偶函數(shù)也相等。利用對(duì)偶規(guī)則,可以使要證明及要記憶的公式數(shù)目減少一半。例如:在運(yùn)用反演規(guī)則和對(duì)偶規(guī)則時(shí),必須按照邏輯運(yùn)算的優(yōu)先順序進(jìn)行:先算括號(hào),接著與運(yùn)算,然后或運(yùn)算,最后非運(yùn)算,否則容易出錯(cuò)。ACABCBA)()(CABABCAABABAABABA)()()(EDCBAYEDCBAYEDCBAY“或或-與與”表達(dá)式表達(dá)式“與非與非-與非與非”表達(dá)式表達(dá)式 “與與-或或-非非”表達(dá)式表達(dá)式“或非或非-或非
6、或非”表達(dá)式表達(dá)式“與與-或或”表達(dá)式表達(dá)式 2.1.3 邏輯函數(shù)的代數(shù)法化簡(jiǎn)邏輯函數(shù)的代數(shù)法化簡(jiǎn) DCACL DC A C = )DC)(CA( )C+D()CA( DCCA 1 1、邏輯函數(shù)的最簡(jiǎn)與、邏輯函數(shù)的最簡(jiǎn)與- -或表達(dá)式或表達(dá)式在若干個(gè)邏輯關(guān)系相同的與在若干個(gè)邏輯關(guān)系相同的與- -或表達(dá)式中,將其中或表達(dá)式中,將其中包含的與項(xiàng)數(shù)包含的與項(xiàng)數(shù)最少,且每個(gè)與項(xiàng)中變量數(shù)最少的表達(dá)式稱為最簡(jiǎn)與最少,且每個(gè)與項(xiàng)中變量數(shù)最少的表達(dá)式稱為最簡(jiǎn)與- -或表達(dá)式或表達(dá)式。2、邏輯函數(shù)的化簡(jiǎn)方法、邏輯函數(shù)的化簡(jiǎn)方法 化簡(jiǎn)的主要方法:化簡(jiǎn)的主要方法:公式法(代數(shù)法)公式法(代數(shù)法)圖解法(卡諾圖法)圖
7、解法(卡諾圖法)ABCBCABCAABC)(CBBCAA)(BCCBCBBC)(邏輯函數(shù)的代數(shù)化簡(jiǎn)法邏輯函數(shù)的代數(shù)化簡(jiǎn)法1 1、并項(xiàng)法、并項(xiàng)法邏輯函數(shù)的公式化簡(jiǎn)法就是運(yùn)用邏輯代數(shù)的基本公式、定理和規(guī)則來化簡(jiǎn)邏輯函數(shù)。利用公式1,將兩項(xiàng)合并為一項(xiàng),并消去一個(gè)變量。CBBCAABCY1CABAABCY2運(yùn)用摩根定律運(yùn)用分配律運(yùn)用分配律)(CBAABC2 2、吸收法、吸收法BAFEBCDABAY)(1BABCDBADABADBCDABADCDBAY)()(2如果乘積項(xiàng)是如果乘積項(xiàng)是另外一個(gè)乘積另外一個(gè)乘積項(xiàng)的因子,則項(xiàng)的因子,則這另外一個(gè)乘這另外一個(gè)乘積項(xiàng)是多余的。積項(xiàng)是多余的。運(yùn)用摩根定律()利用
8、公式,消去多余的項(xiàng)。()利用公式+,消去多余的變量。CABCABABCBAAB)(DCBADBACBADBACBADBACCBA)()(如果一個(gè)乘積如果一個(gè)乘積項(xiàng)的反是另一項(xiàng)的反是另一個(gè)乘積項(xiàng)的因個(gè)乘積項(xiàng)的因子,則這個(gè)因子,則這個(gè)因子是多余的。子是多余的。CBCAABYDCBDCACBAY3 3、消去冗余項(xiàng)法、消去冗余項(xiàng)法利用冗余律,將冗余項(xiàng)消去。DCADEACBAY1)(2FGDEACCBABYDCACBAADEDCACBA)(BCACABBCAABCCBAABCCABABC)()()(4 4、配項(xiàng)法、配項(xiàng)法()利用公式(),為某一項(xiàng)配上其所缺的變量,以便用其它方法進(jìn)行化簡(jiǎn)。BACBCBBA
9、Y()利用公式,為某項(xiàng)配上其所能合并的項(xiàng)。BCACBACABABCY)()(CCBACBAACBBACBABCACBACBACBBA)()1 ()1 (BBCAACBCBACACBBA)CC(DBADBA)DD(ABL DBADBA=AB )(DDBAAB BAAB BAAB BAAB CDBADCBAABDDBADABL 例例2.1.8 已知邏輯函數(shù)表達(dá)式為已知邏輯函數(shù)表達(dá)式為,要求:(要求:(1)最簡(jiǎn)的與)最簡(jiǎn)的與-或邏輯函數(shù)表達(dá)式,并畫出相應(yīng)的邏輯圖;或邏輯函數(shù)表達(dá)式,并畫出相應(yīng)的邏輯圖;(2)僅用與非門畫出最簡(jiǎn)表達(dá)式的邏輯圖。)僅用與非門畫出最簡(jiǎn)表達(dá)式的邏輯圖。解:解:) B A L
10、AB BA & & & & & CBACBA CBACBA CBACBA B L CBA 1 1 1 A C CBA 1 1 1 CBACBAL 例例2.1.9 試對(duì)邏輯函數(shù)表達(dá)式試對(duì)邏輯函數(shù)表達(dá)式進(jìn)行變換,僅用或非門畫出該表達(dá)式的邏輯圖。進(jìn)行變換,僅用或非門畫出該表達(dá)式的邏輯圖。解:解: CBACBAL 2.2 邏輯函數(shù)的卡諾圖化簡(jiǎn)法邏輯函數(shù)的卡諾圖化簡(jiǎn)法2.2.2 邏輯函數(shù)的最小項(xiàng)表達(dá)式邏輯函數(shù)的最小項(xiàng)表達(dá)式2.2.1 最小項(xiàng)的定義及性質(zhì)最小項(xiàng)的定義及性質(zhì)2.2.4 用卡諾圖化簡(jiǎn)邏輯函數(shù)用卡諾圖化簡(jiǎn)邏輯函數(shù)2.2.3 用卡諾圖表示邏輯函數(shù)用卡諾圖表示邏輯函數(shù)1.邏輯代數(shù)與普通代數(shù)的公式易混
11、淆,化簡(jiǎn)過程要求對(duì)所邏輯代數(shù)與普通代數(shù)的公式易混淆,化簡(jiǎn)過程要求對(duì)所有公式熟練掌握;有公式熟練掌握;2.代數(shù)法化簡(jiǎn)無一套完善的方法可循,它依賴于人的經(jīng)驗(yàn)代數(shù)法化簡(jiǎn)無一套完善的方法可循,它依賴于人的經(jīng)驗(yàn)和靈活性;和靈活性;3.用這種化簡(jiǎn)方法技巧強(qiáng),較難掌握。特別是對(duì)代數(shù)化簡(jiǎn)用這種化簡(jiǎn)方法技巧強(qiáng),較難掌握。特別是對(duì)代數(shù)化簡(jiǎn)后得到的邏輯表達(dá)式是否是最簡(jiǎn)式判斷有一定困難。后得到的邏輯表達(dá)式是否是最簡(jiǎn)式判斷有一定困難??ㄖZ圖法可以比較簡(jiǎn)便地得到最簡(jiǎn)的邏輯表達(dá)式??ㄖZ圖法可以比較簡(jiǎn)便地得到最簡(jiǎn)的邏輯表達(dá)式。代數(shù)法化簡(jiǎn)在使用中遇到的困難:代數(shù)法化簡(jiǎn)在使用中遇到的困難:n個(gè)變量個(gè)變量X1, X2, , Xn的
12、最小項(xiàng)是的最小項(xiàng)是n個(gè)因子的乘積,個(gè)因子的乘積,每個(gè)變量每個(gè)變量都以它的原變量或非變量的形式在乘積項(xiàng)中出現(xiàn),且僅出都以它的原變量或非變量的形式在乘積項(xiàng)中出現(xiàn),且僅出現(xiàn)一次現(xiàn)一次。一般。一般n個(gè)變量的最小項(xiàng)應(yīng)有個(gè)變量的最小項(xiàng)應(yīng)有2n個(gè)。個(gè)。 BAACBA、 、A(B+C)等則不是最小項(xiàng)。等則不是最小項(xiàng)。例如,例如,A、B、C三個(gè)邏輯變量的最小項(xiàng)有(三個(gè)邏輯變量的最小項(xiàng)有(23)8個(gè),即個(gè),即 CBACBACBABCACBACBACABABC、1. 最小項(xiàng)的意義最小項(xiàng)的意義2.2 .1 最小項(xiàng)的定義及其性質(zhì)最小項(xiàng)的定義及其性質(zhì)對(duì)于變量的任一組取值,全體最小項(xiàng)之和為對(duì)于變量的任一組取值,全體最小項(xiàng)之
13、和為1 1。對(duì)于任意一個(gè)最小項(xiàng),只有一組變量取值使得它的值為對(duì)于任意一個(gè)最小項(xiàng),只有一組變量取值使得它的值為1 1; 對(duì)于變量的任一組取值,任意兩個(gè)最小項(xiàng)的乘積為對(duì)于變量的任一組取值,任意兩個(gè)最小項(xiàng)的乘積為0 0;CBABCACBACBACBACABABCCBAABC0 00 00 01 10 00 00 00 00 00 00 00 00 01 10 01 10 00 00 00 00 00 00 01 10 00 00 01 10 00 00 00 00 01 10 00 00 00 00 00 01 10 00 00 00 01 11 10 00 00 01 10 00 00 00 01
14、 10 01 10 00 00 00 00 01 10 00 01 11 10 00 00 00 00 00 00 01 10 01 11 11 10 00 00 00 00 00 00 01 1三個(gè)變量的所有最小項(xiàng)的真值表三個(gè)變量的所有最小項(xiàng)的真值表 2、最小項(xiàng)的性質(zhì)最小項(xiàng)的性質(zhì) 3、最小項(xiàng)的編號(hào)最小項(xiàng)的編號(hào) 三個(gè)變量的所有最小項(xiàng)的真值表三個(gè)變量的所有最小項(xiàng)的真值表 m0m1m2m3m4m5m6m7最小項(xiàng)的表示:通常用最小項(xiàng)的表示:通常用mi表示最小項(xiàng),表示最小項(xiàng),m 表示最小項(xiàng)表示最小項(xiàng), ,下標(biāo)下標(biāo)i為為最小項(xiàng)號(hào)。最小項(xiàng)號(hào)。 ABC0 00 00 01 10 00 00 00 00 00
15、 00 00 00 01 10 01 10 00 00 00 00 00 00 01 10 00 00 01 10 00 00 00 00 01 10 00 00 00 00 00 01 10 00 00 00 01 11 10 00 00 01 10 00 00 00 01 10 01 10 00 00 00 00 01 10 00 01 11 10 00 00 00 00 00 00 01 10 01 11 11 10 00 00 00 00 00 00 01 1CBABCACBACBACBACABABCCBA 2.2.2 邏輯函數(shù)的最小項(xiàng)表達(dá)式邏輯函數(shù)的最小項(xiàng)表達(dá)式 ( , ,)()()
16、L A B CAB CCA BB Cl為為“與或與或”邏輯表達(dá)式;邏輯表達(dá)式; l 在在“與或與或”式中的每個(gè)乘積項(xiàng)都是式中的每個(gè)乘積項(xiàng)都是最小項(xiàng)最小項(xiàng)。例例1 1 將將( , ,)L A B CABAC化成最小項(xiàng)表達(dá)式化成最小項(xiàng)表達(dá)式ABCABCABCABC= m7m6m3m5 (7, 6 3 5)m, ,()L ABCABCABCABCABC邏輯函數(shù)的最小項(xiàng)表達(dá)式:邏輯函數(shù)的最小項(xiàng)表達(dá)式:( , ,)()L A B CABABC AB 例例2 將將 化成最小項(xiàng)表達(dá)式化成最小項(xiàng)表達(dá)式 a.去掉非號(hào)去掉非號(hào)()()L A,B,CABABCAB()AB AB CAB()()AB AB CABb.
17、去括號(hào)去括號(hào)ABCABCAB()ABCABCAB CCABCABCABCABC3576(3,5,6,7)mmmmm2.2.3 用卡諾圖表示邏輯函數(shù)用卡諾圖表示邏輯函數(shù)1、卡諾圖的引出卡諾圖的引出卡諾圖:將卡諾圖:將n變量的全部最小項(xiàng)都用小方塊表示,并使具有變量的全部最小項(xiàng)都用小方塊表示,并使具有邏輯相鄰的最小項(xiàng)在幾何位置上也相鄰地排列起來,這樣邏輯相鄰的最小項(xiàng)在幾何位置上也相鄰地排列起來,這樣, ,所得到的圖形叫所得到的圖形叫n變量的卡諾圖。變量的卡諾圖。邏輯相鄰的最小項(xiàng):如果兩個(gè)最小項(xiàng)只有一個(gè)變量互為反變邏輯相鄰的最小項(xiàng):如果兩個(gè)最小項(xiàng)只有一個(gè)變量互為反變量,那么,就稱這兩個(gè)最小項(xiàng)在邏輯上相
18、鄰。量,那么,就稱這兩個(gè)最小項(xiàng)在邏輯上相鄰。如最小項(xiàng)如最小項(xiàng)m6=ABC、與與m7 =ABC 在邏輯上相在邏輯上相鄰鄰m7m6AB10100100011110 m0 m1 m2 m3 m4 m5 m6 m7 m12 m13 m14 m15 m8 m9 m10 m110001111000011110ABCD三變量卡諾圖三變量卡諾圖四變量卡諾圖四變量卡諾圖BABABAAB兩變量卡諾圖兩變量卡諾圖m0m1m2m3ACCCBABCACBABCACBACBACBAABCCAB m0 m1 m2 m3 m4 m5 m6 m7ADBB2、卡諾圖的特點(diǎn)卡諾圖的特點(diǎn):各小方格對(duì)應(yīng)于各變量不同的組合,而且各小方格
19、對(duì)應(yīng)于各變量不同的組合,而且上下左右在幾何上相鄰的方格內(nèi)只有一個(gè)因子有差別,這個(gè)上下左右在幾何上相鄰的方格內(nèi)只有一個(gè)因子有差別,這個(gè)重要特點(diǎn)成為卡諾圖化簡(jiǎn)邏輯函數(shù)的主要依據(jù)重要特點(diǎn)成為卡諾圖化簡(jiǎn)邏輯函數(shù)的主要依據(jù)。 3. 已知邏輯函數(shù)畫卡諾圖已知邏輯函數(shù)畫卡諾圖當(dāng)邏輯函數(shù)為最小項(xiàng)表達(dá)式時(shí),在卡諾圖中找出和表達(dá)式中最小項(xiàng)對(duì)應(yīng)的小方格填上1,其余的小方格填上0(有時(shí)也可用空格表示),就可以得到相應(yīng)的卡諾圖。任何邏輯函數(shù)都等于其卡諾圖中為1的方格所對(duì)應(yīng)的最小項(xiàng)之和。例例1:畫出邏輯函數(shù):畫出邏輯函數(shù)L(A, B, C, D)= m(0, 1, 2, 3, 4, 8, 10, 11, 14, 15)的
20、卡諾圖的卡諾圖 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 10 11 01 00 CD 00 01 11 10 AB L ( ,)()()()L A B C DABCD ABCD ABCD()()ABCDABCDLABCDABCDABCDABCDABCD例例2 畫出下式的卡諾圖畫出下式的卡諾圖 10 11 01 00 CD 00 01 11 10 AB L 0 00 00 00 00 0 1 1 1 1 1 1 1 1 1 1 1 解解1. 1. 將邏輯函數(shù)化為最小項(xiàng)表達(dá)式將邏輯函數(shù)化為最小項(xiàng)表達(dá)式2. 2. 填寫卡諾圖填寫卡諾圖 ),(m15131060 2.2.4 用
21、卡諾圖化簡(jiǎn)邏輯函數(shù)用卡諾圖化簡(jiǎn)邏輯函數(shù) 1、化簡(jiǎn)的依據(jù)、化簡(jiǎn)的依據(jù) 邏輯相鄰幾何相鄰邏輯相鄰幾何相鄰, 邏輯相鄰項(xiàng)可化邏輯相鄰項(xiàng)可化簡(jiǎn)簡(jiǎn)DABDADBA DBACDBADCBA BDABCDADCBA m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10 AB CD 00 01 11 10 00 01 11 10 ADABDDBADADDA 2、化簡(jiǎn)的步驟、化簡(jiǎn)的步驟用卡諾圖化簡(jiǎn)邏輯函數(shù)的步驟如下:用卡諾圖化簡(jiǎn)邏輯函數(shù)的步驟如下:(4) 將所有包圍圈對(duì)應(yīng)的乘積項(xiàng)相加。將所有包圍圈對(duì)應(yīng)的乘積項(xiàng)相加。(1) 將邏輯函數(shù)寫成最小項(xiàng)表達(dá)式將邏輯函數(shù)
22、寫成最小項(xiàng)表達(dá)式(2) 按最小項(xiàng)表達(dá)式填卡諾圖,凡式中包含了的最小項(xiàng),按最小項(xiàng)表達(dá)式填卡諾圖,凡式中包含了的最小項(xiàng),其對(duì)應(yīng)方格填其對(duì)應(yīng)方格填1,其余方格填,其余方格填0。(3) 合并最小項(xiàng),即將相鄰的合并最小項(xiàng),即將相鄰的1方格圈成一組方格圈成一組(包圍圈包圍圈),每一組含每一組含2n個(gè)方格個(gè)方格,對(duì)應(yīng)每個(gè)包圍圈寫成一個(gè)新的乘積,對(duì)應(yīng)每個(gè)包圍圈寫成一個(gè)新的乘積項(xiàng)。項(xiàng)。畫包圍圈時(shí)應(yīng)遵循的原則:畫包圍圈時(shí)應(yīng)遵循的原則: (1 1)包圍圈內(nèi)的方格數(shù)一定是)包圍圈內(nèi)的方格數(shù)一定是2n個(gè),且包圍圈必須呈矩形。個(gè),且包圍圈必須呈矩形。(2)循環(huán)相鄰特性包括上下底相鄰,左右邊相鄰和四角相鄰。循環(huán)相鄰特性包括
23、上下底相鄰,左右邊相鄰和四角相鄰。(3)同一方格可以被不同的包圍圈重復(fù)包圍多次,但新增同一方格可以被不同的包圍圈重復(fù)包圍多次,但新增的包圍圈中一定要有原有包圍圈未曾包圍的方格。的包圍圈中一定要有原有包圍圈未曾包圍的方格。(4) 一個(gè)包圍圈的方格數(shù)要盡可能多一個(gè)包圍圈的方格數(shù)要盡可能多, ,包圍圈數(shù)目要包圍圈數(shù)目要盡盡可能少。可能少。 m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10 00 01 11 10 AB CD 00 01 11 10 m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10 00 01 11 10 AB CD 00 01 11 10 DBBDL BD 例例 :用卡諾圖法化簡(jiǎn)下列邏輯函數(shù)用卡諾圖法化簡(jiǎn)下列邏輯函數(shù)(2)畫包圍圈合并最小項(xiàng),得最簡(jiǎn)與)畫包圍圈合并最小項(xiàng),得最簡(jiǎn)與-或表達(dá)式或表達(dá)式 解:解:(1) 由由L 畫出卡諾圖畫出卡諾圖 m)D,C,B,A(L(0,2,5,7,8,10,13,15) L C 1 0 0 1 0 1 1 0 0 1 1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銷售經(jīng)理區(qū)域市場(chǎng)拓展聘用合同模板2篇
- 2025年項(xiàng)目工程中介協(xié)議書模板(含設(shè)計(jì)、施工、驗(yàn)收)3篇
- 2025年私人房產(chǎn)買賣合同文本與合同解除條件3篇
- 民政局2025版離婚協(xié)議書婚姻糾紛調(diào)解服務(wù)協(xié)議2篇
- 二零二五版美容院美容院連鎖加盟管理合同4篇
- 墻面裝飾板施工方案
- 窮人續(xù)寫200字6篇
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫(典型題)
- 2025年消防系統(tǒng)智能化改造與安全評(píng)估合同協(xié)議3篇
- 2024年園區(qū)綠化管理制度
- 二零二五年度無人駕駛車輛測(cè)試合同免責(zé)協(xié)議書
- 2025年湖北華中科技大學(xué)招聘實(shí)驗(yàn)技術(shù)人員52名歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 高三日語一輪復(fù)習(xí)助詞「と」的用法課件
- 毛渣采購合同范例
- 2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-注射相關(guān)感染預(yù)防與控制
- 五年級(jí)上冊(cè)小數(shù)遞等式計(jì)算200道及答案
- 2024年廣東高考政治真題考點(diǎn)分布匯 總- 高考政治一輪復(fù)習(xí)
- 燃?xì)夤艿滥甓葯z驗(yàn)報(bào)告
- GB/T 44052-2024液壓傳動(dòng)過濾器性能特性的標(biāo)識(shí)
- FZ/T 81013-2016寵物狗服裝
- JB∕T 14089-2020 袋式除塵器 濾袋運(yùn)行維護(hù)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論