版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、一、問題的提出一、問題的提出1.自由落體運(yùn)動(dòng)的瞬時(shí)速度問題自由落體運(yùn)動(dòng)的瞬時(shí)速度問題0tt ,0時(shí)時(shí)刻刻的的瞬瞬時(shí)時(shí)速速度度求求tt如圖如圖,0tt 的的時(shí)時(shí)刻刻取取一一鄰鄰近近于于, t 運(yùn)動(dòng)時(shí)間運(yùn)動(dòng)時(shí)間tsv 平均速度平均速度00ttss ).(20ttg ,0時(shí)時(shí)當(dāng)當(dāng)tt 取極限得取極限得2t)(tlimv00 gtt瞬瞬時(shí)時(shí)速速度度.0gt 2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置播放播放 T0 xxoxy)(xfy CNM如圖如圖, 如果割線如果割線MN繞點(diǎn)繞點(diǎn)M旋轉(zhuǎn)而趨向極限位置旋轉(zhuǎn)而趨向極限位置MT,直線直線MT就稱為曲線就稱為曲線C在點(diǎn)在點(diǎn)M處的處的切線
2、切線.極限位置即極限位置即. 0, 0 NMTMN).,(),(00yxNyxM設(shè)設(shè)的斜率為的斜率為割線割線MN00tanxxyy ,)()(00 xxxfxf ,0 xxMNC沿沿曲曲線線的斜率為的斜率為切線切線MT.)()(limtan000 xxxfxfkxx 二、導(dǎo)數(shù)的定義二、導(dǎo)數(shù)的定義,)(,)(,0);()(,)(,)(00000000 xxyxxfyxxfyxxyxfxxfyyxxxxxxxfy 記為記為處的導(dǎo)數(shù)處的導(dǎo)數(shù)在點(diǎn)在點(diǎn)數(shù)數(shù)并稱這個(gè)極限為函并稱這個(gè)極限為函處可導(dǎo)處可導(dǎo)在點(diǎn)在點(diǎn)則稱函數(shù)則稱函數(shù)時(shí)的極限存在時(shí)的極限存在之比當(dāng)之比當(dāng)與與如果如果得增量得增量取取相應(yīng)地函數(shù)相應(yīng)地函
3、數(shù)時(shí)時(shí)仍在該鄰域內(nèi)仍在該鄰域內(nèi)點(diǎn)點(diǎn)處取得增量處取得增量在在當(dāng)自變量當(dāng)自變量有定義有定義的某個(gè)鄰域內(nèi)的某個(gè)鄰域內(nèi)在點(diǎn)在點(diǎn)設(shè)函數(shù)設(shè)函數(shù)定義定義.)()(lim)(0000hxfhxfxfh 其它形式其它形式.)()(lim)(0000 xxxfxfxfxx xxfxxfxyyxxxx )()(limlim00000,)(00 xxxxdxxdfdxdy 或或即即.,0慢慢程程度度而而變變化化的的快快因因變變量量隨隨自自變變量量的的變變化化反反映映了了它它處處的的變變化化率率點(diǎn)點(diǎn)導(dǎo)導(dǎo)數(shù)數(shù)是是因因變變量量在在點(diǎn)點(diǎn) x.)(,)(內(nèi)內(nèi)可可導(dǎo)導(dǎo)在在開開區(qū)區(qū)間間就就稱稱函函數(shù)數(shù)處處都都可可導(dǎo)導(dǎo)內(nèi)內(nèi)的的每每點(diǎn)
4、點(diǎn)在在開開區(qū)區(qū)間間如如果果函函數(shù)數(shù)IxfIxfy 關(guān)于導(dǎo)數(shù)的說明:關(guān)于導(dǎo)數(shù)的說明:.)(),(,.)(.)(,dxxdfdxdyxfyxfxfIx或或記作記作的導(dǎo)函數(shù)的導(dǎo)函數(shù)這個(gè)函數(shù)叫做原來函數(shù)這個(gè)函數(shù)叫做原來函數(shù)導(dǎo)數(shù)值導(dǎo)數(shù)值的一個(gè)確定的的一個(gè)確定的都對應(yīng)著都對應(yīng)著對于任一對于任一 xxfxxfyx )()(lim0即即.)()(lim)(0hxfhxfxfh 或或注意注意: :.)()(. 100 xxxfxf 播放播放2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.右導(dǎo)數(shù)右導(dǎo)數(shù):單側(cè)導(dǎo)數(shù)單側(cè)導(dǎo)數(shù)1.左導(dǎo)數(shù)左導(dǎo)數(shù):;)()(lim)()(li
5、m)(00000000 xxfxxfxxxfxfxfxxx ;)()(lim)()(lim)(00000000 xxfxxfxxxfxfxfxxx 函函數(shù)數(shù))(xf在在點(diǎn)點(diǎn)0 x處處可可導(dǎo)導(dǎo)左左導(dǎo)導(dǎo)數(shù)數(shù))(0 xf 和和右右導(dǎo)導(dǎo)數(shù)數(shù))(0 xf 都都存存在在且且相相等等.如如果果)(xf在在開開區(qū)區(qū)間間 ba,內(nèi)內(nèi)可可導(dǎo)導(dǎo),且且)(af 及及)(bf 都都存存在在,就就說說)(xf在在閉閉區(qū)區(qū)間間 ba,上上可可導(dǎo)導(dǎo).,),(),()(000可可導(dǎo)導(dǎo)性性的的討討論論在在點(diǎn)點(diǎn)設(shè)設(shè)函函數(shù)數(shù)xxxxxxxxf xxfxxfx )()(lim000若若xxxxx )()(lim000 ,)(0存存在在
6、xf 則則)(xf在在點(diǎn)點(diǎn)0 x可可導(dǎo)導(dǎo),,)(0存存在在xf xxfxxfx )()(lim000若若xxxxx )()(lim000 ,)()(00axfxf 且且.)(0axf 且且三、由定義求導(dǎo)數(shù)三、由定義求導(dǎo)數(shù)步驟步驟:);()()1(xfxxfy 求增量求增量;)()()2(xxfxxfxy 算算比比值值.lim)3(0 xyyx 求求極極限限例例1 1.)()(的導(dǎo)數(shù)的導(dǎo)數(shù)為常數(shù)為常數(shù)求函數(shù)求函數(shù)CCxf 解解hxfhxfxfh)()(lim)(0 hCCh 0lim. 0 . 0)( C即即例例2 2.)(sin)(sin,sin)(4 xxxxxf及及求求設(shè)設(shè)函函數(shù)數(shù)解解hx
7、hxxhsin)sin(lim)(sin0 22sin)2cos(lim0hhhxh .cos x .cos)(sinxx 即即44cos)(sin xxxx.22 例例3 3.)(的的導(dǎo)導(dǎo)數(shù)數(shù)為為正正整整數(shù)數(shù)求求函函數(shù)數(shù)nxyn 解解hxhxxnnhn )(lim)(0! 2)1(lim1210 nnnhhhxnnnx1 nnx.)(1 nnnxx即即更一般地更一般地)(.)(1Rxx )( x例如例如,12121 x.21x )(1 x11)1( x.12x 例例4 4.)1, 0()(的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù) aaaxfx解解haaaxhxhx 0lim)(haahhx1lim0 .ln
8、aax .ln)(aaaxx 即即.)(xxee 例例5 5.)1, 0(log的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù) aaxya解解hxhxyaahlog)(loglim0 .log1)(logexxaa 即即.1)(lnxx xxhxhah1)1(loglim0 hxahxhx)1(loglim10 .log1exa 例例6 6.0)(處的可導(dǎo)性處的可導(dǎo)性在在討論函數(shù)討論函數(shù) xxxf解解xy xyo,)0()0(hhhfhf hhhfhfhh 00lim)0()0(lim, 1 hhhfhfhh 00lim)0()0(lim. 1 ),0()0( ff即即.0)(點(diǎn)點(diǎn)不不可可導(dǎo)導(dǎo)在在函函數(shù)數(shù) xxfy
9、四、導(dǎo)數(shù)的幾何意義四、導(dǎo)數(shù)的幾何意義oxy)(xfy T0 xM)(,tan)(,)(,()()(0000為傾角為傾角即即切線的斜率切線的斜率處的處的在點(diǎn)在點(diǎn)表示曲線表示曲線 xfxfxMxfyxf切線方程為切線方程為法線方程為法線方程為).)(000 xxxfyy ).()(1000 xxxfyy 例例7 7.,)2 ,21(1方方程程和和法法線線方方程程并并寫寫出出在在該該點(diǎn)點(diǎn)處處的的切切線線斜斜率率處處的的切切線線的的在在點(diǎn)點(diǎn)求求等等邊邊雙雙曲曲線線xy 解解由導(dǎo)數(shù)的幾何意義由導(dǎo)數(shù)的幾何意義, 得切線斜率為得切線斜率為21 xyk21)1( xx2121 xx. 4 所求切線方程為所求切
10、線方程為法線方程為法線方程為),21(42 xy),21(412 xy. 044 yx即即. 01582 yx即即五、可導(dǎo)與連續(xù)的關(guān)系五、可導(dǎo)與連續(xù)的關(guān)系定理定理 凡可導(dǎo)函數(shù)都是連續(xù)函數(shù)凡可導(dǎo)函數(shù)都是連續(xù)函數(shù). .證證,)(0可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)設(shè)設(shè)函函數(shù)數(shù)xxf)(lim00 xfxyx )(0 xfxyxxxfy )(0)(limlim000 xxxfyxx 0 .)(0連連續(xù)續(xù)在在點(diǎn)點(diǎn)函函數(shù)數(shù)xxf)0(0 x 連續(xù)函數(shù)不存在導(dǎo)數(shù)舉例連續(xù)函數(shù)不存在導(dǎo)數(shù)舉例.,)()()(,)(. 1000函函數(shù)數(shù)在在角角點(diǎn)點(diǎn)不不可可導(dǎo)導(dǎo)的的角角點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱點(diǎn)點(diǎn)若若連連續(xù)續(xù)函函數(shù)數(shù)xfxxfxfx
11、f xy2xy 0 xy 例如例如,0,0,)(2 xxxxxf.)(0,0的的角角點(diǎn)點(diǎn)為為處處不不可可導(dǎo)導(dǎo)在在xfxx 注意注意: : 該定理的逆定理不成立該定理的逆定理不成立.31xyxy01)( .)(,)()(limlim,)(. 2000000不可導(dǎo)不可導(dǎo)有無窮導(dǎo)數(shù)有無窮導(dǎo)數(shù)在點(diǎn)在點(diǎn)稱函數(shù)稱函數(shù)但但連續(xù)連續(xù)在點(diǎn)在點(diǎn)設(shè)函數(shù)設(shè)函數(shù)xxfxxfxxfxyxxfxx 例如例如, 1)(3 xxf.1處不可導(dǎo)處不可導(dǎo)在在 x., )()(. 30點(diǎn)點(diǎn)不不可可導(dǎo)導(dǎo)則則指指擺擺動(dòng)動(dòng)不不定定不不存存在在在在連連續(xù)續(xù)點(diǎn)點(diǎn)的的左左右右導(dǎo)導(dǎo)數(shù)數(shù)都都函函數(shù)數(shù)xxf,0, 00,1sin)( xxxxxf例如
12、例如,.0處不可導(dǎo)處不可導(dǎo)在在 x011/1/xy.)()(,)(. 4000不可導(dǎo)點(diǎn)不可導(dǎo)點(diǎn)的尖點(diǎn)的尖點(diǎn)為函數(shù)為函數(shù)則稱點(diǎn)則稱點(diǎn)符號(hào)相反符號(hào)相反的兩個(gè)單側(cè)導(dǎo)數(shù)的兩個(gè)單側(cè)導(dǎo)數(shù)且在點(diǎn)且在點(diǎn)若若xfxxxf xyoxy0 xo)(xfy )(xfy 例例8 8.0,0, 00,1sin)(處處的的連連續(xù)續(xù)性性與與可可導(dǎo)導(dǎo)性性在在討討論論函函數(shù)數(shù) xxxxxxf解解,1sin是有界函數(shù)是有界函數(shù)x01sinlim0 xxx.0)(處連續(xù)處連續(xù)在在 xxf處處有有但但在在0 xxxxxy 001sin)0(x 1sin.11,0之之間間振振蕩蕩而而極極限限不不存存在在和和在在時(shí)時(shí)當(dāng)當(dāng) xyx.0)(處
13、不可導(dǎo)處不可導(dǎo)在在 xxf0)(lim)0(0 xffx六、小結(jié)六、小結(jié)1. 導(dǎo)數(shù)的實(shí)質(zhì)導(dǎo)數(shù)的實(shí)質(zhì): 增量比的極限增量比的極限;2. axf )(0 )(0 xf;)(0axf 3. 導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的幾何意義: 切線的斜率切線的斜率;4. 函數(shù)可導(dǎo)一定連續(xù),但連續(xù)不一定可導(dǎo)函數(shù)可導(dǎo)一定連續(xù),但連續(xù)不一定可導(dǎo);5. 求導(dǎo)數(shù)最基本的方法求導(dǎo)數(shù)最基本的方法: 由定義求導(dǎo)數(shù)由定義求導(dǎo)數(shù).6. 判斷可導(dǎo)性判斷可導(dǎo)性不連續(xù)不連續(xù),一定不可導(dǎo)一定不可導(dǎo).連續(xù)連續(xù)直接用定義直接用定義;看左右導(dǎo)數(shù)是否存在且相等看左右導(dǎo)數(shù)是否存在且相等.思考題思考題 函數(shù)函數(shù))(xf在某點(diǎn)在某點(diǎn)0 x處的導(dǎo)數(shù)處的導(dǎo)數(shù))(0
14、xf 與導(dǎo)函數(shù)與導(dǎo)函數(shù))(xf 有什么區(qū)別與聯(lián)系?有什么區(qū)別與聯(lián)系?思考題解答思考題解答 由導(dǎo)數(shù)的定義知,由導(dǎo)數(shù)的定義知,)(0 xf 是一個(gè)具體的是一個(gè)具體的數(shù)值,數(shù)值,)(xf 是由于是由于)(xf在某區(qū)間在某區(qū)間I上每一上每一點(diǎn)都可導(dǎo)而定義在點(diǎn)都可導(dǎo)而定義在I上的一個(gè)新函數(shù),即上的一個(gè)新函數(shù),即Ix ,有唯一值,有唯一值)(xf 與之對應(yīng),所以兩與之對應(yīng),所以兩者的者的區(qū)別區(qū)別是:一個(gè)是數(shù)值,另一個(gè)是函數(shù)兩是:一個(gè)是數(shù)值,另一個(gè)是函數(shù)兩者的者的聯(lián)系聯(lián)系是:在某點(diǎn)是:在某點(diǎn)0 x處的導(dǎo)數(shù)處的導(dǎo)數(shù))(0 xf 即是導(dǎo)即是導(dǎo)函數(shù)函數(shù))(xf 在在0 x處的函數(shù)值處的函數(shù)值一一、 填填空空題題:
15、1 1、 設(shè)設(shè))(xf在在0 xx 處處可可導(dǎo)導(dǎo),即即)(0 xf 存存在在,則則 _)()(lim000 xxfxxfx , , _)()(lim000 xxfxxfx . .2 2、 已已知知物物體體的的運(yùn)運(yùn)動(dòng)動(dòng)規(guī)規(guī)律律為為2ts ( (米米) ),則則該該物物體體在在 2 t秒秒時(shí)時(shí)的的速速度度為為_ _ _ _ _ _ _ _ . .3 3、 設(shè)設(shè)321)(xxy , ,221)(xxy , ,53223)(xxxxy , , 則則它它們們的的導(dǎo)導(dǎo)數(shù)數(shù)分分別別為為dxdy1= =_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,dxdy2= =_ _ _
16、 _ _ _ _ _ _ _ _ _ _ _ ,dxdy3= =_ _ _ _ _ _ _ _ _ _ _ _ _ _ . .練練習(xí)習(xí)題題4 4、 設(shè)設(shè)2)(xxf , ,則則 )(xff_ _; )(xff_._.5 5、 曲 線曲 線xey 在 點(diǎn)在 點(diǎn))1,0(處 的 切 線 方 程 為處 的 切 線 方 程 為_._.二、二、 在下列各題中均假定在下列各題中均假定)(0 xf 存在,按照導(dǎo)數(shù)的定存在,按照導(dǎo)數(shù)的定義觀察下列極限,分析并指出義觀察下列極限,分析并指出A表示什么?表示什么? 1 1、Axxxfxfxx 00)()(lim0; 2 2、Ahhfh )(lim0,其中,其中)0
17、(0)0(ff 且且存在;存在; 3 3、Ahhxfhxfh )()(lim000. .三、證明:若三、證明:若)(xf為偶函數(shù)且為偶函數(shù)且)0(f 存在,則存在,則0)0( f. .練習(xí)題答案練習(xí)題答案2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題
18、切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.切線問題切線問題割線的極限位置割線的極限位置切線位置切線位置2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變
19、化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)
20、(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).2.導(dǎo)函數(shù)導(dǎo)函數(shù)(瞬時(shí)變化率瞬時(shí)變化率)是函數(shù)平均變化率的逼近是函數(shù)平均變化率的逼近函數(shù)函數(shù).一、和、差、積、商的求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理定理并且并且可導(dǎo)可導(dǎo)處也處也在點(diǎn)在點(diǎn)分母不為零分母不為零們的和、差、積、商們的和、差、積、商則它則它處可導(dǎo)處可導(dǎo)在點(diǎn)在點(diǎn)如果函數(shù)如果函數(shù),)(,)(),(xxxvxu).0)()()()()()()()( )3();()()()( )()( )2();()( )()( )1(2 xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxu證證(3)(3)
21、,0)( ,)()()( xvxvxuxf設(shè)設(shè)hxfhxfxfh)()(lim)(0 hxvhxvhxvxuxvhxuh)()()()()()(lim0 hxvxuhxvhxuh)()()()(lim0 證證(1)(1)、(2)(2)略略. .hxvhxvxvhxvxuxvxuhxuh)()()()()()()()(lim0 )()()()()()()()(lim0 xvhxvhxvhxvxuxvhxuhxuh 2)()()()()(xvxvxuxvxu .)(處可導(dǎo)處可導(dǎo)在在xxf推論推論; )( )()1(11 niiniixfxf);( )()2(xfCxCf ; )()()()()()
22、()()( )()3(1121211 ninikkkinnniixfxfxfxfxfxfxfxfxf二、例題分析二、例題分析例例1 1.sin223的導(dǎo)數(shù)的導(dǎo)數(shù)求求xxxy 解解23xy x4 例例2 2.ln2sin的的導(dǎo)導(dǎo)數(shù)數(shù)求求xxy 解解xxxylncossin2 xxxylncoscos2 xxxln)sin(sin2 xxx1cossin2 .cos x .2sin1ln2cos2xxxx 例例3 3.tan的的導(dǎo)導(dǎo)數(shù)數(shù)求求xy 解解)cossin()(tan xxxyxxxxx2cos)(cossincos)(sin xxx222cossincos xx22seccos1 .se
23、c)(tan2xx 即即.csc)(cot2xx 同理可得同理可得例例4 4.sec的的導(dǎo)導(dǎo)數(shù)數(shù)求求xy 解解)cos1()(sec xxyxx2cos)(cos .tansecxx xx2cossin .cotcsc)(cscxxx 同理可得同理可得例例5 5.sinh的導(dǎo)數(shù)的導(dǎo)數(shù)求求xy 解解 )(21)(sinh xxeexy)(21xxee .cosh x 同理可得同理可得xxsinh)(cosh xx2cosh1)(tanh 例例6 6).(,0),1ln(0,)(xfxxxxxf 求求設(shè)設(shè)解解, 1)( xf,0時(shí)時(shí)當(dāng)當(dāng) x,0時(shí)時(shí)當(dāng)當(dāng) xhxhxxfh)1ln()1ln(lim)
24、(0 )11ln(1lim0 xhhh ,11x ,0時(shí)時(shí)當(dāng)當(dāng) xhhfh)01ln()0(lim)0(0 , 1 hhfh)01ln()0(1lnlim)0(0 , 1 . 1)0( f.0,110, 1)( xxxxf三、小結(jié)三、小結(jié)注意注意:);()( )()(xvxuxvxu .)()()()(xvxuxvxu 分段函數(shù)分段函數(shù)求導(dǎo)時(shí)求導(dǎo)時(shí), 分界點(diǎn)導(dǎo)數(shù)用左右導(dǎo)數(shù)求分界點(diǎn)導(dǎo)數(shù)用左右導(dǎo)數(shù)求.思考題思考題 求曲線求曲線 上與上與 軸平行軸平行的切線方程的切線方程.32xxy x思考題解答思考題解答232xy 令令0 y0322 x321 x322 x切點(diǎn)為切點(diǎn)為 964,32 964,32
25、所求切線方程為所求切線方程為964 y964 y和和一、一、 填空題:填空題:1 1、 設(shè)設(shè)xxysin ,則,則y = = _._.2 2、 設(shè)設(shè)xeayxx23 ,則則dxdy=_.=_.3 3、 設(shè)設(shè))13(2 xxeyx, ,則則0 xdxdy= = _._.4 4、 設(shè)設(shè)1sectan2 xxy, ,則則y = =_._.5 5、 設(shè)設(shè)553)(2xxxfy , ,則則)0(f = =_._.6 6、 曲線曲線xysin2 在在0 x處的切線處的切線軸軸與與x正向的正向的夾角為夾角為_._.練練 習(xí)習(xí) 題題二、二、 計(jì)算下列各函數(shù)的導(dǎo)數(shù):計(jì)算下列各函數(shù)的導(dǎo)數(shù):1 1、 211xxy
26、;2 2、110110 xxy;3 3、 21csc2xxy ; 4 4、ttxf 11)(, ,求求)4(f ; 5 5、)0, 0( baaxxbbaybax. .三、三、 求拋物線求拋物線cbxaxy 2上具有水平切線的點(diǎn)上具有水平切線的點(diǎn). .四、四、 寫出曲線寫出曲線xxy1 與與x軸交點(diǎn)處的切線方程軸交點(diǎn)處的切線方程. .一、一、1 1、)cos2sin(xxxx ;2 2、22ln3xeaaxx ; 3 3、2 ; 4 4、)tansec2(secxxx ;5 5、253;6 6、4 . .二、二、1 1、 22)1(21xxx ; 2 2、2)110(10ln210 xx; 3
27、 3、222)1(2cot)1(csc2xxxxx ; 4 4、181; 5 5、)(ln)()()(xbabaaxxbbabax . .三、三、)44,2(2aacbab . .四、四、022 yx和和022 yx. .練習(xí)題答案練習(xí)題答案一、反函數(shù)的導(dǎo)數(shù)一、反函數(shù)的導(dǎo)數(shù)定理定理.)(1)(,)(,0)()(xxfIxfyyIyxxy 且且有有內(nèi)內(nèi)也也可可導(dǎo)導(dǎo)在在對對應(yīng)應(yīng)區(qū)區(qū)間間那那末末它它的的反反函函數(shù)數(shù)且且內(nèi)內(nèi)單單調(diào)調(diào)、可可導(dǎo)導(dǎo)在在某某區(qū)區(qū)間間如如果果函函數(shù)數(shù)即即 反函數(shù)的導(dǎo)數(shù)等于直接函數(shù)導(dǎo)數(shù)的倒數(shù)反函數(shù)的導(dǎo)數(shù)等于直接函數(shù)導(dǎo)數(shù)的倒數(shù).證證,xIx 任任取取xx 以以增增量量給給的單調(diào)性可
28、知的單調(diào)性可知由由)(xfy , 0 y于是有于是有,1yxxy ,)(連連續(xù)續(xù)xf),0(0 xy0)( y 又又知知xyxfx 0lim)(yxy 1lim0)(1y .)(1)(yxf 即即), 0(xIxxx 例例1 1.arcsin的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù)xy 解解,)2,2(sin內(nèi)單調(diào)、可導(dǎo)內(nèi)單調(diào)、可導(dǎo)在在 yIyx, 0cos)(sin yy且且內(nèi)內(nèi)有有在在)1 , 1( xI)(sin1)(arcsin yxycos1 y2sin11 .112x .11)(arccos2xx 同理可得同理可得;11)(arctan2xx )(arcsin x.11)cot(2xx arc例例
29、2 2.log的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)xya , 0ln)( aaayy且且,), 0(內(nèi)有內(nèi)有在在 xI)(1)(log yaaxaayln1 .ln1ax 解解,),(內(nèi)內(nèi)單單調(diào)調(diào)、可可導(dǎo)導(dǎo)在在 yyIax特別地特別地.1)(lnxx 二、復(fù)合函數(shù)的求導(dǎo)法則二、復(fù)合函數(shù)的求導(dǎo)法則定理定理).()(,)(,)()(,)(0000000 xufdxdyxxfyxuufyxxuxx 且且其其導(dǎo)導(dǎo)數(shù)數(shù)為為可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)則則復(fù)復(fù)合合函函數(shù)數(shù)可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)而而可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)如如果果函函數(shù)數(shù)即即 因變量對自變量求導(dǎo)因變量對自變量求導(dǎo), ,等于因變量對中間變等于因變量對中間變量求導(dǎo)量求導(dǎo), ,乘以中
30、間變量對自變量求導(dǎo)乘以中間變量對自變量求導(dǎo).(.(鏈?zhǔn)椒▌t鏈?zhǔn)椒▌t) )證證,)(0可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)由由uufy )(lim00ufuyu )0lim()(00 uufuy故故uuufy )(0則則xyx 0lim)(lim00 xuxuufx xuxuufxxx 0000limlimlim)().()(00 xuf 推廣推廣),(),(),(xvvuufy 設(shè)設(shè).)(dxdvdvdududydxdyxfy 的的導(dǎo)導(dǎo)數(shù)數(shù)為為則則復(fù)復(fù)合合函函數(shù)數(shù) 例例3 3.sinln的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)xy 解解.sin,lnxuuy dxdududydxdy xucos1 xxsincos xcot 例
31、例4 4.)1(102的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù) xy解解)1()1(10292 xxdxdyxx2)1(1092 .)1(2092 xx例例5 5.arcsin22222的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù)axaxaxy 解解)arcsin2()2(222 axaxaxy2222222222121xaaxaxxa .22xa )0( a例例6 6.)2(21ln32的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù) xxxy解解),2ln(31)1ln(212 xxy)2(31211212 xxxy)2(3112 xxx例例7 7.1sin的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)xey 解解)1(sin1sin xeyx)1(1cos1sin x
32、xex.1cos11sin2xexx 三、小結(jié)三、小結(jié)反函數(shù)的求導(dǎo)法則反函數(shù)的求導(dǎo)法則(注意成立條件)(注意成立條件);復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)法則(注意函數(shù)的復(fù)合過程(注意函數(shù)的復(fù)合過程,合理分解正確使用鏈合理分解正確使用鏈導(dǎo)法)導(dǎo)法);已能求導(dǎo)的函數(shù)已能求導(dǎo)的函數(shù):可分解成基本初等函數(shù)可分解成基本初等函數(shù),或常或常數(shù)與基本初等函數(shù)的和、差、積、商數(shù)與基本初等函數(shù)的和、差、積、商.思考題思考題 若若)(uf在在0u不可導(dǎo),不可導(dǎo),)(xgu 在在0 x可導(dǎo),且可導(dǎo),且)(00 xgu ,則,則)(xgf在在0 x處處( )(1)必可導(dǎo);)必可導(dǎo);(2)必不可導(dǎo);)必不可導(dǎo);(3)不一
33、定可導(dǎo);)不一定可導(dǎo);思考題解答思考題解答正確地選擇是正確地選擇是(3)例例|)(uuf 在在 處不可導(dǎo),處不可導(dǎo),0 u取取xxgusin)( 在在 處可導(dǎo),處可導(dǎo),0 x|sin|)(xxgf 在在 處不可導(dǎo),處不可導(dǎo),0 x )1(取取4)(xxgu 在在 處可導(dǎo),處可導(dǎo),0 x44|)(xxxgf 在在 處可導(dǎo),處可導(dǎo),0 x )2(練練 習(xí)習(xí) 題題二、二、 求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù):1 1、 xy1arccos ; 2 2、xxy2sin ;3 3、)ln(22xaxy ;4 4、)cotln(cscxxy ;5 5、2)2(arcsinxy ; 6 6、xeyarctan
34、 ;7 7、xxyarccosarcsin ; 8 8、xxy 11arcsin. .三、三、 設(shè)設(shè))(xf,)(xg可導(dǎo),且可導(dǎo),且0)()(22 xgxf, ,求函數(shù)求函數(shù))()(22xgxfy 的導(dǎo)數(shù)的導(dǎo)數(shù) . .四四、設(shè)設(shè))(xf在在0 x處處可可導(dǎo)導(dǎo),且且0)0( f,0)0( f, ,又又)(xF在在0 x處處可可導(dǎo)導(dǎo),證證明明 )(xfF在在0 x處處也也可可導(dǎo)導(dǎo) . .一、一、1 1、3)52(8 x; 2 2、x2sin; 3 3、412xx ; 4 4、xtan ; 5 5、)2sec22(tan10ln1022tanxxxxx ; 6 6、)(22xfx ; 7 7、xx
35、kekxk21tansectan , ,21. .二、二、1 1、122 xxx; 2 2、22sin2cos2xxxx ;3 3、221xa ; 4 4、xcsc; 5 5、242arcsin2xx ; 6 6、)1(2arctanxxex ;練習(xí)題答案練習(xí)題答案 7 7、22)(arccos12xx ; 8 8、)1(2)1(1xxx . .三三、)()()()()()(22xgxfxgxgxfxf . .初等函數(shù)的求導(dǎo)問題初等函數(shù)的求導(dǎo)問題xxxxxxxCtansec)(secsec)(tancos)(sin0)(2 1.常數(shù)和基本初等函數(shù)的導(dǎo)數(shù)公式常數(shù)和基本初等函數(shù)的導(dǎo)數(shù)公式xxxxx
36、xxxxcotcsc)(csccsc)(cotsin)(cos)(21 axxaaaaxxln1)(logln)( xxeexx1)(ln)( 2211)(arctan11)(arcsinxxxx 2211)cot(11)(arccosxxxx arc2.函數(shù)的和、差、積、商的求導(dǎo)法則函數(shù)的和、差、積、商的求導(dǎo)法則設(shè)設(shè))(),(xvvxuu 可導(dǎo),則可導(dǎo),則(1) vuvu )(, (2)uccu )((3)vuvuuv )(, (4))0()(2 vvvuvuvu.( ( 是常數(shù)是常數(shù)) )C 3.復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)法則).()()()()(),(xufxydxdududydx
37、dyxfyxuufy 或或?qū)?shù)為導(dǎo)數(shù)為的的則復(fù)合函數(shù)則復(fù)合函數(shù)而而設(shè)設(shè)利用上述公式及法則初等函數(shù)求導(dǎo)問題可完全解利用上述公式及法則初等函數(shù)求導(dǎo)問題可完全解決決.注意注意: :初等函數(shù)的導(dǎo)數(shù)仍為初等函數(shù)初等函數(shù)的導(dǎo)數(shù)仍為初等函數(shù).例例1 1.的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù)xxxy 解解)(21 xxxxxxy)(211(21 xxxxxxx)211(211(21xxxxxx .812422xxxxxxxxxx 例例2 2.)(sin的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)nnnxfy 解解)(sin)(sin1nnnnnxfxnfy )(sin)(sin1nnnxxn 1cos nnnxx).(sin)(sin)(s
38、in)(sincos1113nnnnnnnnnnxxfxxfxxn 小結(jié)小結(jié)任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本初任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本初等函數(shù)的求導(dǎo)公式和上述求導(dǎo)法則求出等函數(shù)的求導(dǎo)公式和上述求導(dǎo)法則求出.關(guān)鍵關(guān)鍵: 正確分解初等函數(shù)的復(fù)合結(jié)構(gòu)正確分解初等函數(shù)的復(fù)合結(jié)構(gòu).思考題思考題冪函數(shù)在其定義域內(nèi)(冪函數(shù)在其定義域內(nèi)( ).(1) 必可導(dǎo);必可導(dǎo); (2)必不可導(dǎo);)必不可導(dǎo);(3)不一定可導(dǎo);)不一定可導(dǎo);思考題解答思考題解答正確地選擇是正確地選擇是(3)例例32)(xxf ),( x在在 處不可導(dǎo),處不可導(dǎo),0 x )1(2)(xxf ),( x在定義域內(nèi)處處可導(dǎo),在定
39、義域內(nèi)處處可導(dǎo), )2(練練 習(xí)習(xí) 題題練習(xí)題答練習(xí)題答案案一、高階導(dǎo)數(shù)的定義一、高階導(dǎo)數(shù)的定義問題問題: :變速直線運(yùn)動(dòng)的加速度變速直線運(yùn)動(dòng)的加速度.),(tfs 設(shè)設(shè))()(tftv 則瞬時(shí)速度為則瞬時(shí)速度為的的變變化化率率對對時(shí)時(shí)間間是是速速度度加加速速度度tva. )()()( tftvta定義定義.)() )(,)()(lim) )(,)()(0處處的的二二階階導(dǎo)導(dǎo)數(shù)數(shù)在在點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱存存在在即即處處可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)的的導(dǎo)導(dǎo)數(shù)數(shù)如如果果函函數(shù)數(shù)xxfxfxxfxxfxfxxfxfx 記作記作.)(,),(2222dxxfddxydyxf或或 記記作作階階導(dǎo)導(dǎo)數(shù)數(shù)的的函函數(shù)
40、數(shù)階階導(dǎo)導(dǎo)數(shù)數(shù)的的導(dǎo)導(dǎo)數(shù)數(shù)稱稱為為的的函函數(shù)數(shù)一一般般地地,)(1)(,nxfnxf .)(,),()()(nnnnnndxxfddxydyxf或或三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù)三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù), 二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù)高階導(dǎo)數(shù).)(;)(,稱稱為為一一階階導(dǎo)導(dǎo)數(shù)數(shù)稱稱為為零零階階導(dǎo)導(dǎo)數(shù)數(shù)相相應(yīng)應(yīng)地地xfxf .,),(33dxydyxf 二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù)二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),.,),(44)4()4(dxydyxf二、二、 高階導(dǎo)數(shù)求法舉例高階導(dǎo)數(shù)求法舉例例例1 1).0(),0(,arctanffxy 求求設(shè)設(shè)解解211xy )1
41、1(2 xy22)1(2xx )1(2(22 xxy322)1()13(2xx 022)1(2)0( xxxf0322)1()13(2)0( xxxf; 0 . 2 1.1.直接法直接法: :由高階導(dǎo)數(shù)的定義逐步求高階導(dǎo)數(shù)由高階導(dǎo)數(shù)的定義逐步求高階導(dǎo)數(shù).例例2 2.),()(nyRxy求求設(shè)設(shè) 解解1 xy)(1 xy2)1( x3)2)(1( x)1(2 xy)1()1()1()( nxnynn則則為自然數(shù)為自然數(shù)若若,n )()()(nnnxy , !n ) !()1( nyn. 0 例例3 3.),1ln()(nyxy求求設(shè)設(shè) 解解注意注意: :xy 112)1(1xy 3)1(! 2x
42、y 4)4()1(! 3xy )1! 0, 1()1()!1()1(1)( nxnynnn 求求n階導(dǎo)數(shù)時(shí)階導(dǎo)數(shù)時(shí),求出求出1-3或或4階后階后,不要急于合并不要急于合并,分析結(jié)果的規(guī)律性分析結(jié)果的規(guī)律性,寫出寫出n階導(dǎo)數(shù)階導(dǎo)數(shù).(數(shù)學(xué)歸納法證明數(shù)學(xué)歸納法證明)例例4 4.,sin)(nyxy求求設(shè)設(shè) 解解xycos )2sin( x)2cos( xy)22sin( x)22sin( x)22cos( xy)23sin( x)2sin()( nxyn)2cos()(cos)( nxxn同理可得同理可得例例5 5.),(sin)(naxybabxey求求為為常常數(shù)數(shù)設(shè)設(shè) 解解bxbebxaeya
43、xaxcossin )cossin(bxbbxaeax )arctan()sin(22abbxbaeax )cos()sin(22 bxbebxaebayaxax)2sin(2222 bxbaebaax)sin()(222)( nbxebayaxnn)arctan(ab 2. 高階導(dǎo)數(shù)的運(yùn)算法則高階導(dǎo)數(shù)的運(yùn)算法則:則則階階導(dǎo)導(dǎo)數(shù)數(shù)具具有有和和設(shè)設(shè)函函數(shù)數(shù),nvu)()()()()1(nnnvuvu )()()()2(nnCuCu )()(0)()()()2()1()()(!)1()1(! 2)1()()3(kknnkknnkknnnnnvuCuvvukknnnvunnvnuvuvu 萊布尼茲公
44、式萊布尼茲公式例例6 6.,)20(22yexyx求求設(shè)設(shè) 解解則由萊布尼茲公式知?jiǎng)t由萊布尼茲公式知設(shè)設(shè),22xveux 0)()(! 2)120(20)()(20)(2)18(22)19(22)20(2)20( xexexeyxxx22! 21920222022182192220 xxxexexe)9520(22220 xxex3.3.間接法間接法: :常用高階導(dǎo)數(shù)公式常用高階導(dǎo)數(shù)公式nnxnx )1()1()()4()(nnnxnx)!1()1()(ln)5(1)( )2sin()(sin)2()( nkxkkxnn)2cos()(cos)3()( nkxkkxnn)0(ln)()1()(
45、 aaaanxnxxnxee )()( 利用已知的高階導(dǎo)數(shù)公式利用已知的高階導(dǎo)數(shù)公式, 通過四則通過四則1)(!)1()1( nnnxnx運(yùn)算運(yùn)算, 變量代換等方法變量代換等方法, 求出求出n階導(dǎo)數(shù)階導(dǎo)數(shù).例例7 7.,11)5(2yxy求求設(shè)設(shè) 解解)1111(21112 xxxy)1(! 5)1(! 52166)5( xxy)1(1)1(16066 xx例例8 8.,cossin)(66nyxxy求求設(shè)設(shè) 解解3232)(cos)(sinxxy )coscossin)(sincos(sin422422xxxxxx xxxx22222cossin3)cos(sin x2sin4312 24c
46、os1431x x4cos8385 ).24cos(483)( nxynn三、小結(jié)三、小結(jié)高階導(dǎo)數(shù)的定義;高階導(dǎo)數(shù)的定義;高階導(dǎo)數(shù)的運(yùn)算法則高階導(dǎo)數(shù)的運(yùn)算法則(萊布尼茲公式萊布尼茲公式);n階導(dǎo)數(shù)的求法階導(dǎo)數(shù)的求法;1.直接法直接法;2.間接法間接法.思考題思考題設(shè)設(shè) 連續(xù),且連續(xù),且 ,)(xg )()()(2xgaxxf 求求 .)(af 思考題解答思考題解答)(xg可導(dǎo)可導(dǎo))()()()(2)(2xgaxxgaxxf )(xg 不一定存在不一定存在故用定義求故用定義求)(af )(af axafxfax )()(lim0)( afaxxfax )(lim)()()(2limxgaxxga
47、x )(2ag 一、一、 填空題:填空題:1 1、 設(shè)設(shè)tetysin 則則y =_.=_.2 2、 設(shè)設(shè)xytan , ,則則y = =_._.3 3、 設(shè)設(shè)xxyarctan)1(2 ,則,則y = =_._.4 4、 設(shè)設(shè)2xxey , ,則則y = =_._.5 5、 設(shè)設(shè))(2xfy , ,)(xf 存在,則存在,則y = =_. .6 6、 設(shè)設(shè)6)10()( xxf, ,則則)2(f =_.=_.7 7、 設(shè)設(shè)nnnnnaxaxaxax 12211 ( (naaa,21都是常數(shù)都是常數(shù)) ),則,則)(ny= =_. .8 8、設(shè)、設(shè))()2)(1()(nxxxxxf , , 則
48、則)()1(xfn = =_._.練練 習(xí)習(xí) 題題二、二、 求下列函數(shù)的二階導(dǎo)數(shù):求下列函數(shù)的二階導(dǎo)數(shù):1 1、 xxxy423 ;2 2、 xxylncos2 ;3 3、 )1ln(2xxy . .三、三、 試從試從ydydx 1,導(dǎo)出:,導(dǎo)出:1 1、 322)(yydyxd ;2 2、 6233)()(3yyyydyxd . .五、驗(yàn)證函數(shù)五、驗(yàn)證函數(shù)xxececy 21 ( ( , ,1c , ,2c是常數(shù))是常數(shù)) 滿足關(guān)系式滿足關(guān)系式02 yy . .六、六、 求下列函數(shù)的求下列函數(shù)的 n n 階導(dǎo)數(shù):階導(dǎo)數(shù): 1 1、xeyxcos ;2 2、 xxy 11;3 3、 2323
49、xxxy; ;4 4、 xxxy3sin2sinsin . .一、一、1 1、tetcos2 ; 2 2、xxtansec22; 3 3、212arctan2xxx ; 4 4、)23(222xxex ; 5 5、)(4)(2222xfxxf ; 6 6、207360207360; 7 7、!n; 8 8、)!1( n. .二、二、1 1、3258434 xx;2 2、22cos2sin2ln2cos2xxxxxx ;3 3、232)1(xx . .練習(xí)題答案練習(xí)題答案六、六、1 1、)4cos()2( nxexn ; 2 2、1)1(!2)1( nnxn; 3 3、)2(,)1(1)2(8!
50、)1(11 nxxnnnn;4 4、)22sin(241 nxn + +)26sin(6)24sin(4 nxnxnn. .一、隱函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)定義定義: :.)(稱稱為為隱隱函函數(shù)數(shù)由由方方程程所所確確定定的的函函數(shù)數(shù)xyy .)(形形式式稱稱為為顯顯函函數(shù)數(shù)xfy 0),( yxF)(xfy 隱函數(shù)的顯化隱函數(shù)的顯化問題問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則隱函數(shù)求導(dǎo)法則: :用復(fù)合函數(shù)求導(dǎo)法則直接對方程兩邊求導(dǎo)用復(fù)合函數(shù)求導(dǎo)法則直接對方程兩邊求導(dǎo).例例1 1.,00 xyxdxdydxdyyeexy的的導(dǎo)導(dǎo)數(shù)數(shù)所所確確定定的的隱
51、隱函函數(shù)數(shù)求求由由方方程程解解,求導(dǎo)求導(dǎo)方程兩邊對方程兩邊對x0 dxdyeedxdyxyyx解得解得,yxexyedxdy , 0, 0 yx由原方程知由原方程知000 yxyxxexyedxdy. 1 例例2 2.,)23,23(,333線線通通過過原原點(diǎn)點(diǎn)在在該該點(diǎn)點(diǎn)的的法法并并證證明明曲曲線線的的切切線線方方程程點(diǎn)點(diǎn)上上求求過過的的方方程程為為設(shè)設(shè)曲曲線線CCxyyxC 解解,求導(dǎo)求導(dǎo)方程兩邊對方程兩邊對xyxyyyx 333322)23,23(22)23,23(xyxyy . 1 所求切線方程為所求切線方程為)23(23 xy. 03 yx即即2323 xy法線方程為法線方程為,xy
52、 即即顯然通過原點(diǎn)顯然通過原點(diǎn).例例3 3.)1 , 0(, 144處處的的值值在在點(diǎn)點(diǎn)求求設(shè)設(shè)yyxyx 解解求求導(dǎo)導(dǎo)得得方方程程兩兩邊邊對對x)1(04433 yyyxyx得得代入代入1, 0 yx;4110 yxy求求導(dǎo)導(dǎo)得得兩兩邊邊再再對對將將方方程程x)1(04)(122123222 yyyyyxyx得得4110 yxy, 1, 0 yx代代入入.16110 yxy二、對數(shù)求導(dǎo)法二、對數(shù)求導(dǎo)法觀察函數(shù)觀察函數(shù).,)4(1)1(sin23xxxyexxxy 方法方法: :先在方程兩邊取對數(shù)先在方程兩邊取對數(shù), 然后利用隱函數(shù)的求導(dǎo)然后利用隱函數(shù)的求導(dǎo)方法求出導(dǎo)數(shù)方法求出導(dǎo)數(shù).-對數(shù)求導(dǎo)
53、法對數(shù)求導(dǎo)法適用范圍適用范圍: :.)()(的情形的情形數(shù)數(shù)多個(gè)函數(shù)相乘和冪指函多個(gè)函數(shù)相乘和冪指函xvxu例例4 4解解 142)1(3111)4(1)1(23 xxxexxxyx等式兩邊取對數(shù)得等式兩邊取對數(shù)得xxxxy )4ln(2)1ln(31)1ln(ln求導(dǎo)得求導(dǎo)得上式兩邊對上式兩邊對 x142)1(3111 xxxyy.,)4(1)1(23yexxxyx 求求設(shè)設(shè)例例5 5解解.),0(sinyxxyx 求求設(shè)設(shè)等式兩邊取對數(shù)得等式兩邊取對數(shù)得xxylnsinln 求求導(dǎo)導(dǎo)得得上上式式兩兩邊邊對對xxxxxyy1sinlncos1 )1sinln(cosxxxxyy )sinln
54、(cossinxxxxxx 一般地一般地)0)()()()( xuxuxfxv)()(1)(lnxfdxdxfxfdxd 又又)(ln)()(xfdxdxfxf )()()()(ln)()()()(xuxuxvxuxvxuxfxv )(ln)()(lnxuxvxf 三、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)三、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù).,)()(定定的的函函數(shù)數(shù)稱稱此此為為由由參參數(shù)數(shù)方方程程所所確確間間的的函函數(shù)數(shù)關(guān)關(guān)系系與與確確定定若若參參數(shù)數(shù)方方程程xytytx 例如例如 ,22tytx2xt 22)2(xty 42x xy21 消去參數(shù)消去參數(shù)問題問題: : 消參困難或無法消參如何求導(dǎo)消參困
55、難或無法消參如何求導(dǎo)?t),()(1xttx 具有單調(diào)連續(xù)的反函數(shù)具有單調(diào)連續(xù)的反函數(shù)設(shè)函數(shù)設(shè)函數(shù))(1xy , 0)(,)(),( ttytx 且且都都可可導(dǎo)導(dǎo)再再設(shè)設(shè)函函數(shù)數(shù)由復(fù)合函數(shù)及反函數(shù)的求導(dǎo)法則得由復(fù)合函數(shù)及反函數(shù)的求導(dǎo)法則得dxdtdtdydxdy dtdxdtdy1 )()(tt dtdxdtdydxdy 即即,)()(中中在方程在方程 tytx,)()(二階可導(dǎo)二階可導(dǎo)若函數(shù)若函數(shù) tytx)(22dxdydxddxyd dxdtttdtd)()( )(1)()()()()(2tttttt .)()()()()(322tttttdxyd 即即例例6 6解解dtdxdtdydx
56、dy ttcos1sin taatacossin 2cos12sin2 tdxdy. 1 .方程方程處處的的切切線線在在求求擺擺線線2)cos1()sin( ttayttax.),12(,2ayaxt 時(shí)時(shí)當(dāng)當(dāng) 所求切線方程為所求切線方程為)12( axay)22( axy即即例例7 7解解.)2(;)1(,21sin,cos,002000的速度大小的速度大小炮彈在時(shí)刻炮彈在時(shí)刻的運(yùn)動(dòng)方向的運(yùn)動(dòng)方向炮彈在時(shí)刻炮彈在時(shí)刻求求其運(yùn)動(dòng)方程為其運(yùn)動(dòng)方程為發(fā)射炮彈發(fā)射炮彈發(fā)射角發(fā)射角以初速度以初速度不計(jì)空氣的阻力不計(jì)空氣的阻力ttgttvytvxv xyovxvyv0v.,)1(00可由切線的斜率來反映
57、可由切線的斜率來反映時(shí)刻的切線方向時(shí)刻的切線方向軌跡在軌跡在時(shí)刻的運(yùn)動(dòng)方向即時(shí)刻的運(yùn)動(dòng)方向即在在tt)cos()21sin(020 tvgttvdxdy cossin00vgtv .cossin0000 vgtvdxdytt軸方向的分速度為軸方向的分速度為時(shí)刻沿時(shí)刻沿炮彈在炮彈在yxt,)2(000)cos(0ttttxtvdtdxv cos0v 00)21sin(20ttttygttvdtdyv 00singtv 時(shí)刻炮彈的速度為時(shí)刻炮彈的速度為在在0t22yxvvv 2020020sin2tggtvv 例例8 8解解.sincos33表示的函數(shù)的二階導(dǎo)數(shù)表示的函數(shù)的二階導(dǎo)數(shù)求由方程求由方程
58、 taytaxdtdxdtdydxdy )sin(cos3cossin322ttatta ttan )(22dxdydxddxyd )cos()tan(3 tatttatsincos3sec22 tatsin3sec4 四、相關(guān)變化率四、相關(guān)變化率.,)()(變化率稱為相關(guān)變化率變化率稱為相關(guān)變化率這樣兩個(gè)相互依賴的這樣兩個(gè)相互依賴的之間也存在一定關(guān)系之間也存在一定關(guān)系與與從而它們的變化率從而它們的變化率之間存在某種關(guān)系之間存在某種關(guān)系與與而變量而變量都是可導(dǎo)函數(shù)都是可導(dǎo)函數(shù)及及設(shè)設(shè)dtdydtdxyxtyytxx 相關(guān)變化率問題相關(guān)變化率問題: :已知其中一個(gè)變化率時(shí)如何求出另一個(gè)變化率已知
59、其中一個(gè)變化率時(shí)如何求出另一個(gè)變化率?例例9 9解解?,500./140,500率率是是多多少少觀觀察察員員視視線線的的仰仰角角增增加加米米時(shí)時(shí)當(dāng)當(dāng)氣氣球球高高度度為為秒秒米米其其速速率率為為上上升升米米處處離離地地面面鉛鉛直直一一汽汽球球從從離離開開觀觀察察員員則則的仰角為的仰角為觀察員視線觀察員視線其高度為其高度為秒后秒后設(shè)氣球上升設(shè)氣球上升, ht500tanh 求導(dǎo)得求導(dǎo)得上式兩邊對上式兩邊對tdtdhdtd 5001sec2 ,/140秒秒米米 dtdh2sec,5002 米米時(shí)時(shí)當(dāng)當(dāng)h)/(14. 0分分弧弧度度 dtd 仰角增加率仰角增加率 米米500米米500例例1010解解?
60、,20,120,4000,/803水面每小時(shí)上升幾米水面每小時(shí)上升幾米米時(shí)米時(shí)問水深問水深的水槽的水槽頂角為頂角為米米形狀是長為形狀是長為水庫水庫秒的體流量流入水庫中秒的體流量流入水庫中米米河水以河水以則則水庫內(nèi)水量為水庫內(nèi)水量為水深為水深為設(shè)時(shí)刻設(shè)時(shí)刻),(),(tVtht234000)(htV 求導(dǎo)得求導(dǎo)得上式兩邊對上式兩邊對tdtdhhdtdV 38000,/288003小小時(shí)時(shí)米米 dtdV小小時(shí)時(shí)米米/104. 0 dtdh水面上升之速率水面上升之速率0604000m,20米米時(shí)時(shí)當(dāng)當(dāng) h五、小結(jié)五、小結(jié)隱函數(shù)求導(dǎo)法則隱函數(shù)求導(dǎo)法則: : 直接對方程兩邊求導(dǎo)直接對方程兩邊求導(dǎo);對數(shù)求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年房地產(chǎn)項(xiàng)目智能家居分銷服務(wù)協(xié)議6篇
- 瀘州老窖天府中學(xué)七年級(jí)上學(xué)期1月期末語文試卷(含答案)
- 烏當(dāng)區(qū)2024年語文一模試卷
- 二零二五年度商業(yè)活動(dòng)臨時(shí)場地租賃合同
- 二零二五年度離婚后子女撫養(yǎng)及教育協(xié)議書-2025版合同2篇
- 二零二五年通信基站兼職電工維護(hù)服務(wù)合同3篇
- 二零二五年授予食品加工企業(yè)質(zhì)量檢測服務(wù)合同2篇
- 2025酒店裝飾合同協(xié)議范本
- 2025工程銷售合同范文
- 建筑公司內(nèi)部勞務(wù)分包合同
- 小學(xué)語文教研組期末考試質(zhì)量分析
- 《五年級(jí)奧數(shù)總復(fù)習(xí)》精編課件
- TS2011-16 帶式輸送機(jī)封閉棧橋圖集
- 校園安全存在問題及對策
- 多聯(lián)機(jī)的施工方案與技術(shù)措施
- 鉆井作業(yè)常見安全隱患
- 新型肥料配方設(shè)計(jì)與加工PPT課件
- 國際色卡四色模擬專色CMYK色值對照表
- 裝飾施工階段安全檢查表
- 輥壓成型在汽車輕量化中應(yīng)用的關(guān)鍵技術(shù)及發(fā)展-北方工業(yè)大學(xué)
- 地理信息系統(tǒng)原理全冊配套完整課件
評論
0/150
提交評論