版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、.公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù) R參與選擇的元素個(gè)數(shù) !-階乘 ,如 9!9*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2).(n-r+1); 因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n(n-r+1)r舉例:Q1: 有從1到9
2、共計(jì)9個(gè)號(hào)碼球,請(qǐng)問,可以組成多少個(gè)三位數(shù)?A1: 123和213是兩個(gè)不同的排列數(shù)。即對(duì)排列順序有要求的,既屬于“排列P”計(jì)算范疇。 上問題中,任何一個(gè)號(hào)碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類的組合, 我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個(gè)三位數(shù)。計(jì)算公式P(3,9)9*8*7,(從9倒數(shù)3個(gè)的乘積)Q2: 有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問,如果三個(gè)一組,代
3、表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?A2: 213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號(hào)碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。 上問題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1排列、組合的概念和公式典型例題分析 例1 設(shè)有3名學(xué)生和4個(gè)課外小組(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加各有多少種不同方法?
4、0; 解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有 種不同方法 (2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有 種不同方法 點(diǎn)評(píng) 由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問都用乘法原理進(jìn)行計(jì)算 例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少種? 解 依題意,符合要求的排法可分為第一個(gè)排 、 、 中的
5、某一個(gè),共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出: 符合題意的不同排法共有9種 點(diǎn)評(píng) 按照分“類”的思路,本題應(yīng)用了加法原理為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問題的一種數(shù)學(xué)模型 例判斷下列問題是排列問題還是組合問題?并計(jì)算出結(jié)果 (1)高三年級(jí)學(xué)生會(huì)有11人:每兩人互通一封信,共通了多少封信?每兩人互握了一次手,共握了多少次手? (2)高二年級(jí)數(shù)學(xué)課外小組共10人:從中選一名正組長和一名副組長,共有多少種不同的選法?從中選2名參加省數(shù)學(xué)競(jìng)賽,有多少種不同的選法? (3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):
6、從中任取兩個(gè)數(shù)求它們的商可以有多少種不同的商?從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積? (4)有8盆花:從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?從中選出2盆放在教室有多少種不同的選法? 分析(1)由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題其他類似分析 (1)是排列問題,共用了 封信;是組合問題,共需握手 (次) (2)是排列問題,共有 (種)不同的選法;是組合問題,共有 種不同的選法 (3)是排列問題,共有 種不同的商;是組合問題,共有 種不同的積 (
7、4)是排列問題,共有 種不同的選法;是組合問題,共有 種不同的選法 例證明 證明 左式 右式 等式成立 點(diǎn)評(píng)這是一個(gè)排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì) ,可使變形過程得以簡化 例5化簡 解法一原式 解法二原式 點(diǎn)評(píng) 解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過程得以簡化 例6解方程:(1) ;(2) 解 (1)原方程 解得 (2)原方程可變?yōu)?, , 原方程可化為 即 ,解得 第六章 排列組合、二項(xiàng)式定理 一、考綱要求 1.掌握加法原理及乘法原理,并能用這兩個(gè)原理分析解決一些簡
8、單的問題.2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題.3.掌握二項(xiàng)式定理和二項(xiàng)式系數(shù)的性質(zhì),并能用它們計(jì)算和論證一些簡單問題.二、知識(shí)結(jié)構(gòu)三、知識(shí)點(diǎn)、能力點(diǎn)提示 (一)加法原理乘法原理說明 加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排 列、組合中有關(guān)問題提供了理論根據(jù).例1 5位高中畢業(yè)生,準(zhǔn)備報(bào)考3所高等院校,每人報(bào)且只報(bào)一所,不同的報(bào)名方法共有多少種?解: 5個(gè)學(xué)生中每人都可以在3所高等院校中任選一所報(bào)名,因而每個(gè)學(xué)生都有3種不同的 報(bào)名方法,根據(jù)乘法原
9、理,得到不同報(bào)名方法總共有3×3×3×3×3=35(種)(二)排列、排列數(shù)公式說明 排列、排列數(shù)公式及解排列的應(yīng)用題,在中學(xué)代數(shù)中較為獨(dú)特,它研 究的對(duì)象以及研 究問題的方法都和前面掌握的知識(shí)不同,內(nèi)容抽象,解題方法比較靈活,歷屆高考主要考查排列的應(yīng)用題,都是選擇題或填空題考查.例2 由數(shù)字1、2、3、4、5組成沒有重復(fù)數(shù)字的五位數(shù),其中小于50 000的 偶數(shù)共有( )A.60個(gè) B.48個(gè) C.36個(gè) D.24個(gè)解 因?yàn)橐笫桥紨?shù),個(gè)位數(shù)只能是2或4的排法有P12;小于50 000的五位數(shù),萬位只能是1、3或2、4中剩下的一個(gè)的排法有P13;在首末兩位數(shù)排定后,中間3個(gè)位數(shù)的排法有P33,得P13P33P1236(個(gè))由此可知此題應(yīng)選C.例3 將數(shù)字1、2、3、4填入標(biāo)號(hào)為1、2、3、4的四個(gè)方格里,每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合模機(jī)項(xiàng)目安全風(fēng)險(xiǎn)評(píng)價(jià)報(bào)告
- 無源液封水表行業(yè)行業(yè)發(fā)展趨勢(shì)及投資戰(zhàn)略研究分析報(bào)告
- 大學(xué)護(hù)理畢業(yè)生自我鑒定5篇
- 關(guān)于幼師自我鑒定模板錦集9篇
- 私人借款協(xié)議書
- 綜合執(zhí)法網(wǎng)絡(luò)課程設(shè)計(jì)
- 測(cè)量專業(yè)實(shí)習(xí)報(bào)告范文七篇
- 艱苦的軍訓(xùn)心得體會(huì)600字
- 旅游管理實(shí)習(xí)心得體會(huì)8篇
- 文員類實(shí)習(xí)報(bào)告模板集合六篇
- 鐵路護(hù)路巡防服務(wù)投標(biāo)方案(技術(shù)方案)
- 奧數(shù)試題(試題)-2023-2024學(xué)年四年級(jí)下冊(cè)數(shù)學(xué)人教版
- 《昆蟲記》感悟心得體會(huì)
- 白云湖國家濕地公園投資估算表
- 中級(jí)財(cái)務(wù)會(huì)計(jì)學(xué)(安徽財(cái)經(jīng)大學(xué))智慧樹知到期末考試答案2024年
- 人教版(2019)必修第三冊(cè)Unit 4 Space Exploration 課文語法填空
- 門窗施工安全事故應(yīng)急預(yù)案
- 廣東省深圳市南山區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末語文試卷
- 安徽省蚌埠市禹會(huì)區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 九年級(jí)上學(xué)期數(shù)學(xué)老師教學(xué)工作總結(jié)
- 預(yù)防幼兒骨折的措施
評(píng)論
0/150
提交評(píng)論