高數(shù)多元函數(shù)微分學(xué)-偏導(dǎo)數(shù)._第1頁
高數(shù)多元函數(shù)微分學(xué)-偏導(dǎo)數(shù)._第2頁
高數(shù)多元函數(shù)微分學(xué)-偏導(dǎo)數(shù)._第3頁
高數(shù)多元函數(shù)微分學(xué)-偏導(dǎo)數(shù)._第4頁
高數(shù)多元函數(shù)微分學(xué)-偏導(dǎo)數(shù)._第5頁
已閱讀5頁,還剩68頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1定定義義 設(shè)設(shè)函函數(shù)數(shù)),(yxfz 在在點點),(00yx的的某某一一鄰鄰域域內(nèi)內(nèi)有有定定義義,當當y固固定定在在0y而而x在在0 x處處有有增增量量x 時時,相相應(yīng)應(yīng)地地函函數(shù)數(shù)有有增增量量 ),(),(0000yxfyxxf ,如如果果xyxfyxxfx ),(),(lim00000存存在在,則則稱稱此此極極限限為為函函數(shù)數(shù)),(yxfz 在在點點),(00yx處處對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù),記記為為一、偏導(dǎo)數(shù)的定義及其計算法一、偏導(dǎo)數(shù)的定義及其計算法第二節(jié)第二節(jié) 偏導(dǎo)數(shù)偏導(dǎo)數(shù)2同同理理可可定定義義函函數(shù)數(shù)),(yxfz 在在點點),(00yx處處對對y的的偏偏導(dǎo)導(dǎo)數(shù)數(shù), 為為yyxfyy

2、xfy ),(),(lim00000 記記為為00yyxxyz ,00yyxxyf ,00yyxxyz 或或),(00yxfy. .00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.3如如果果函函數(shù)數(shù)),(yxfz 在在區(qū)區(qū)域域D內(nèi)內(nèi)任任一一點點),(yx處處對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)都都存存在在,那那么么這這個個偏偏導(dǎo)導(dǎo)數(shù)數(shù)就就是是x、y的的函函數(shù)數(shù),它它就就稱稱為為函函數(shù)數(shù)),(yxfz 對對自自變變量量x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù), 記記作作xz ,xf ,xz或或),(yxfx.同同理理可可以以定定義義函函數(shù)數(shù)),(yxfz 對對自自變變量量y的的偏偏導(dǎo)導(dǎo)數(shù)數(shù),記記作

3、作yz ,yf ,yz或或),(yxfy.4偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)如如 在在 處處 ),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxxfzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzyxfzyxfzz 5例例 1 1 求求 223yxyxz 在點在點)2 , 1(處的偏導(dǎo)數(shù)處的偏導(dǎo)數(shù)解解 xz;32yx yz.23yx 21yxxz,82312 21yxyz.72213 6例例 2 2 設(shè)設(shè)yxz )1, 0( xx, 求求證證 zyzxxzyx2l

4、n1 .證證 xz,1 yyx yz,ln xxyyzxxzyx ln1xxxyxyxyylnln11 yyxx .2z 原結(jié)論成立原結(jié)論成立7例例 3 3 設(shè)設(shè)22arcsinyxxz ,求,求xz ,yz .解解 xz xyxxyxx2222211322222)(|yxyyyx .|22yxy |)|(2yy 8 yz yyxxyxx222221132222)()(|yxxyyyx yyxx1sgn22 )0( y00 yxyz不存在不存在9例例 4 4 已知理想氣體的狀態(tài)方程已知理想氣體的狀態(tài)方程RTpV (R為常數(shù)) ,求證:為常數(shù)) ,求證:1 pTTVVp.證證 VRTp;2VRT

5、Vp pRTV;pRTV RpVT;RVpT pTTVVp2VRT pR RV . 1 pVRT 10偏導(dǎo)數(shù)偏導(dǎo)數(shù)xu 是一個整體記號,不能拆分是一個整體記號,不能拆分;).0, 0(),0, 0(,),(,yxffxyyxfz求求設(shè)設(shè)例例如如 有關(guān)偏導(dǎo)數(shù)的幾點說明:有關(guān)偏導(dǎo)數(shù)的幾點說明:、 求分界點、不連續(xù)點處的偏導(dǎo)數(shù)要用求分界點、不連續(xù)點處的偏導(dǎo)數(shù)要用定義求;定義求;解解xxfxx0|0|lim)0 , 0(0 0 ).0 , 0(yf 11.),()0 , 0(),(0)0 , 0(),(),(22的偏導(dǎo)數(shù)的偏導(dǎo)數(shù)求求設(shè)設(shè)yxfyxyxyxxyyxf 例例 5 5解解,)0 , 0(),

6、(時時當當 yx22222)(2)(),(yxxyxyxyyxfx ,)()(22222yxxyy 22222)(2)(),(yxxyyyxxyxfy ,)()(22222yxyxx 12,)0 , 0(),(時時當當 yx按定義可知:按定義可知:xfxffxx )0 , 0()0 ,(lim)0 , 0(0, 00lim0 xxyfyffyy )0 , 0(), 0(lim)0 , 0(0, 00lim0 yy,)0 , 0(),(0)0 , 0(),()()(),(22222 yxyxyxxyyyxfx.)0 , 0(),(0)0 , 0(),()()(),(22222 yxyxyxyxx

7、yxfy13、偏導(dǎo)數(shù)存在與連續(xù)的關(guān)系、偏導(dǎo)數(shù)存在與連續(xù)的關(guān)系例如例如,函數(shù)函數(shù) 0, 00,),(222222yxyxyxxyyxf,依定義知在依定義知在)0 , 0(處,處,0)0 , 0()0 , 0( yxff.但函數(shù)在該點處并不連續(xù)但函數(shù)在該點處并不連續(xù). 偏導(dǎo)數(shù)存在偏導(dǎo)數(shù)存在 連續(xù)連續(xù).一元函數(shù)中在某點可導(dǎo)一元函數(shù)中在某點可導(dǎo) 連續(xù),連續(xù),多元函數(shù)中在某點偏導(dǎo)數(shù)存在多元函數(shù)中在某點偏導(dǎo)數(shù)存在 連續(xù),連續(xù),144、偏導(dǎo)數(shù)的幾何意義、偏導(dǎo)數(shù)的幾何意義,),(),(,(00000上上一一點點為為曲曲面面設(shè)設(shè)yxfzyxfyxM 如圖如圖15 偏導(dǎo)數(shù)偏導(dǎo)數(shù)),(00yxfx就是曲面被平面就是

8、曲面被平面0yy 所截得的曲線在點所截得的曲線在點0M處的切線處的切線xTM0對對x軸的軸的斜率斜率. 偏導(dǎo)數(shù)偏導(dǎo)數(shù)),(00yxfy就是曲面被平面就是曲面被平面0 xx 所截得的曲線在點所截得的曲線在點0M處的切線處的切線yTM0對對y軸的軸的斜率斜率.幾何意義幾何意義: :16),(22yxfxzxzxxx ),(22yxfyzyzyyy ),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 函函數(shù)數(shù)),(yxfz 的的二二階階偏偏導(dǎo)導(dǎo)數(shù)數(shù)為為純偏導(dǎo)純偏導(dǎo)混合偏導(dǎo)混合偏導(dǎo)定義:二階及二階以上的偏導(dǎo)數(shù)統(tǒng)稱為高階偏導(dǎo)數(shù)定義:二階及二階以上的偏導(dǎo)數(shù)統(tǒng)稱為高階偏導(dǎo)數(shù). .二、高階偏導(dǎo)數(shù)二

9、、高階偏導(dǎo)數(shù)17例例 6 設(shè)設(shè)13323 xyxyyxz, 求求22xz 、xyz 2、yxz 2、22yz 及33xz . 解解xz ,33322yyyx yz ;9223xxyyx 22xz ,62xy 22yz ;1823xyx 33xz ,62y xyz 2. 19622 yyxyxz 2, 19622 yyx18原函數(shù)圖形原函數(shù)圖形偏導(dǎo)函數(shù)圖形偏導(dǎo)函數(shù)圖形偏導(dǎo)函數(shù)圖形偏導(dǎo)函數(shù)圖形二階混合偏二階混合偏導(dǎo)函數(shù)圖形導(dǎo)函數(shù)圖形觀察上例中原函數(shù)、偏導(dǎo)函數(shù)與二階混合偏導(dǎo)觀察上例中原函數(shù)、偏導(dǎo)函數(shù)與二階混合偏導(dǎo)函數(shù)圖象間的關(guān)系:函數(shù)圖象間的關(guān)系:19例例 7 7 設(shè)設(shè)byeuaxcos ,求二階偏

10、導(dǎo)數(shù),求二階偏導(dǎo)數(shù). 解解,cosbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax 20問題:問題:混合偏導(dǎo)數(shù)都相等嗎?混合偏導(dǎo)數(shù)都相等嗎?.),()0 , 0(),(0)0 , 0(),(),(223的二階混合偏導(dǎo)數(shù)的二階混合偏導(dǎo)數(shù)求求設(shè)設(shè)yxfyxyxyxyxyxf 例例 8 8解解,)0 , 0(),(時時當當 yx2223222)(2)(3),(yxyxxyxyxyxfx ,)(232224222yxyxyxyx ,)(2),(22223223yxyxyxxyxfy

11、 21,)0 , 0(),(時時當當 yx按定義可知:按定義可知:xfxffxx )0 , 0()0 ,(lim)0 , 0(0, 00lim0 xxyfyffyy )0 , 0(), 0(lim)0 , 0(0, 00lim0 yyyfyffxxyxy )0 , 0(), 0(lim)0 , 0(0, 0 xfxffyyxyx )0 , 0()0 ,(lim)0 , 0(0. 1 ).0 , 0()0 , 0(yxxyff 顯然顯然22定理定理 如果函數(shù)如果函數(shù)),(yxfz 的兩個二階混合偏導(dǎo)數(shù)的兩個二階混合偏導(dǎo)數(shù)xyz 2及及yxz 2在區(qū)域在區(qū)域 D D 內(nèi)連續(xù),那末在該區(qū)域內(nèi)這內(nèi)連續(xù)

12、,那末在該區(qū)域內(nèi)這兩個二階混合偏導(dǎo)數(shù)必相等兩個二階混合偏導(dǎo)數(shù)必相等例例 9 9 驗證函數(shù)驗證函數(shù)22ln),(yxyxu 滿足拉普拉滿足拉普拉斯方程斯方程 . 02222 yuxu問題:問題:具備怎樣的條件才能使混合偏導(dǎo)數(shù)相等?具備怎樣的條件才能使混合偏導(dǎo)數(shù)相等?解解),ln(21ln2222yxyx 23,22yxxxu ,22yxyyu ,)()(2)(222222222222yxxyyxxxyxxu .)()(2)(222222222222yxyxyxyyyxyu 2222yuxu. 0 2222222222)()(yxyxyxxy 證畢證畢24偏導(dǎo)數(shù)的定義偏導(dǎo)數(shù)的定義偏導(dǎo)數(shù)的計算、偏導(dǎo)

13、數(shù)的幾何意義偏導(dǎo)數(shù)的計算、偏導(dǎo)數(shù)的幾何意義高階偏導(dǎo)數(shù)高階偏導(dǎo)數(shù)(偏增量比的極限)(偏增量比的極限) 純偏導(dǎo)純偏導(dǎo)混合偏導(dǎo)混合偏導(dǎo)(相等的條件)(相等的條件)小結(jié)及練習(xí)25若函數(shù)若函數(shù)),(yxf在 點在 點),(000yxP連連續(xù),能否斷定續(xù),能否斷定),(yxf在點在點),(000yxP的偏導(dǎo)數(shù)必定存在?的偏導(dǎo)數(shù)必定存在?思考題思考題26思考題解答思考題解答不能不能.,),(22yxyxf 在在)0 , 0(處處連連續(xù)續(xù),但但 )0 , 0()0 , 0(yxff 不存在不存在.例如例如,27一一、 填填空空題題: :1 1、 設(shè)設(shè)yxztanln , ,則則 xz_ _ _ _ _ _ _

14、 _ _; ; yz_ _ _ _ _ _ _ _ _ _. .2 2、 設(shè)設(shè) xzyxezxy則則),(_ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _. .3 3、 設(shè)設(shè),zyxu 則則 xu_ _ _ _ _ _ _ _ _ _ _; ; yu_ _ _ _ _ _ _ _ _ _ _; ; zu_ _ _ _ _ _ _ _ _ _ _ _ _. .4 4、 設(shè)設(shè),arctanxyz 則則 22xz_ _ _ _ _ _ _ _ _; ; 22yz_ _ _ _ _ _ _ _; ; yxz2_ _ _ _ _ _ _ _ _ _ _ _ _. . 練練 習(xí)

15、習(xí) 題題28 5 5、設(shè)、設(shè)zyxu)( , ,則則 yzu2_. .二、二、 求下列函數(shù)的偏導(dǎo)數(shù)求下列函數(shù)的偏導(dǎo)數(shù): : 1 1、yxyz)1( ; 2 2、zyxu)arctan( . .三、三、 曲線曲線 4422yyxz, ,在點在點(2,4,5)(2,4,5)處的切線與正向處的切線與正向x軸所成的傾角是多少軸所成的傾角是多少? ?四、四、 設(shè)設(shè)xyz , ,求求.,22222yxzyzxz 和和五、設(shè)五、設(shè))ln(xyxz , ,求求yxz 23和和23yxz . .29六、六、 驗證驗證: : 1 1、)11(yxez , ,滿足滿足zyzyxzx222 ; 2 2、222zyxr

16、 滿足滿足 rzzryrxr 222222. .七、設(shè)七、設(shè) 0, 00,arctanarctan),(22xyxyyxyxyxyxf 求求xyxff ,. .30一、一、1 1、yxyxyxy2csc2,2csc22 ;2 2、)1(2 yxyexy, ,)1(2 xxyexy;3 3、xxzxzyzyzyln1,1 , , xxzyzyln2 ;4 4、22222222222)(,)(2,)(2yxxyyxxyyxxy ;5 5、)ln1()(yxyzyyxz . .二、二、1 1、 xyxyxyxyyzxyyxzyy1)1ln()1(,)1(12; ;練習(xí)題答案練習(xí)題答案31 2 2、z

17、zyxyxzxu21)(1)( , , ,)(1)(21zzyxyxzyu zyxyxyxzu2)(1)ln()( . .三、三、4 . .四、四、,)1(,ln222222 xxyxxyzyyxz )1ln(12 yxyyxzx. .五、五、223231, 0yyxzyxz . .32七、七、 0, 0; 0, 00, 0,0,arctan2yxyxyxyxyyxyxfx, , 0, 0, 10,0, 12222yxxyyxyxxfxy. .33證證),()(tttu 則則);()(tttv 三、多元函數(shù)的求導(dǎo)法則三、多元函數(shù)的求導(dǎo)法則定理如果函數(shù)定理如果函數(shù))(tu 及及)(tv 都在點都

18、在點t可可導(dǎo),函數(shù)導(dǎo),函數(shù)),(vufz 在對應(yīng)點在對應(yīng)點),(vu具有連續(xù)偏具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)導(dǎo)數(shù),則復(fù)合函數(shù))(),(ttfz 在對應(yīng)點在對應(yīng)點t可可導(dǎo),且其導(dǎo)數(shù)可用下列公式計算:導(dǎo),且其導(dǎo)數(shù)可用下列公式計算: dtdvvzdtduuzdtdz ,獲得增量獲得增量設(shè)設(shè)tt 1、鏈式法則、鏈式法則34由由于于函函數(shù)數(shù)),(vufz 在在點點),(vu有有連連續(xù)續(xù)偏偏導(dǎo)導(dǎo)數(shù)數(shù),21vuvvzuuzz 當當0 u,0 v時,時,01 ,02 tvtutvvztuuztz 21 當當0 t時,時, 0 u,0 v,dtdutu ,dtdvtv 35.lim0dtdvvzdtduuztzdt

19、dzt 上定理的結(jié)論可推廣到中間變量多于兩個的情況上定理的結(jié)論可推廣到中間變量多于兩個的情況.如如dtdwwzdtdvvzdtduuzdtdz uvwtz以上公式中的導(dǎo)數(shù)以上公式中的導(dǎo)數(shù) 稱為稱為dtdz36 上定理還可推廣到中間變量不是一元函數(shù)上定理還可推廣到中間變量不是一元函數(shù)而是多元函數(shù)的情況:而是多元函數(shù)的情況:).,(),(yxyxfz 如果如果),(yxu 及及),(yxv 都在點都在點),(yx具有對具有對x和和y的偏導(dǎo)數(shù),且函數(shù)的偏導(dǎo)數(shù),且函數(shù)),(vufz 在對應(yīng)在對應(yīng)點點),(vu具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)),(),(yxyxfz 在對應(yīng)點在對應(yīng)點

20、),(yx的兩個偏的兩個偏導(dǎo)數(shù)存在,且可用下列公式計算導(dǎo)數(shù)存在,且可用下列公式計算 xvvzxuuzxz , yvvzyuuzyz .37uvxzy鏈式法則如圖示鏈式法則如圖示 xz uzxu vz,xv yz uzyu vz.yv 38 類似地再推廣,設(shè)類似地再推廣,設(shè)),(yxu 、),(yxv 、),(yxww 都在點都在點),(yx具有對具有對x和和y的偏導(dǎo)數(shù),復(fù)合的偏導(dǎo)數(shù),復(fù)合函數(shù)函數(shù)),(),(),(yxwyxyxfz 在對應(yīng)點在對應(yīng)點),(yx兩個偏導(dǎo)數(shù)存在,且可用下列公式計算兩個偏導(dǎo)數(shù)存在,且可用下列公式計算 xwwzxvvzxuuzxz , ywwzyvvzyuuzyz .z

21、wvuyx39特殊地特殊地),(yxufz ),(yxu 即即,),(yxyxfz ,xfxuufxz .yfyuufyz 令令,xv , yw 其中其中, 1 xv, 0 xw, 0 yv. 1 yw把把復(fù)復(fù)合合函函數(shù)數(shù),),(yxyxfz 中中的的y看看作作不不變變而而對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)把把),(yxufz 中中的的u及及y看看作作不不變變而而對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)兩者的區(qū)別兩者的區(qū)別區(qū)別類似區(qū)別類似40例例 1 1 設(shè)設(shè)vezusin ,而,而xyu ,yxv , 求求 xz 和和yz .解解 xz uzxu vzxv 1cossin veyveuu),cossin(vvyeu yz

22、 uzyu vzyv 1cossin vexveuu).cossin(vvxeu 41例例 2 2 設(shè)設(shè)tuvzsin ,而而teu ,tvcos , 求求全全導(dǎo)導(dǎo)數(shù)數(shù)dtdz.解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet 42 例例 3 3 設(shè)設(shè)),(xyzzyxfw ,f具有二階具有二階 連續(xù)偏導(dǎo)數(shù),求連續(xù)偏導(dǎo)數(shù),求xw 和和zxw 2. .解解令令, zyxu ;xyzv 記記,),(1uvuff ,),(212vuvuff 同理有同理有,2f ,11f .22f xwxvvfxuuf ;21fy

23、zf 43 zxw2)(21fyzfz ;221zfyzf yzf zf1zvvfzuuf 11;1211fxyf zf2zvvfzuuf 22;2221fxyf 于是于是 zxw21211fxyf 2f y )(2221fxyfyz .)(22221211f yf zxyfzxyf 44設(shè)設(shè)),(xvufz ,而而)(xu ,)(xv ,則則xfdxdvvfdxduufdxdz ,試試問問dxdz與與xf 是是否否相相同同?為為什什么么?思考題思考題45思考題解答思考題解答不相同不相同.等式左端的等式左端的z是作為一個自變量是作為一個自變量x的函數(shù),的函數(shù),而而等等式式右右端端最最后后一一項

24、項f是是作作為為xvu,的的三三元元函函數(shù)數(shù), 寫出來為寫出來為 xxvuxdxduufdxdz),(.),(),(xvuxxvuxfdxdvvf 46一、填空題一、填空題: : 1 1、設(shè)、設(shè)xyyxzcoscos , ,則則 xz_; yz_. .2 2、 設(shè)設(shè)22)23ln(yyxxz , ,則則 xz_; yz_._. 3 3、設(shè)、設(shè)32sinttez , ,則則 dtdz_._.二二、設(shè)設(shè)uvuez , ,而而xyvyxu ,22,求求yzxz , . .練練 習(xí)習(xí) 題題47三、設(shè)三、設(shè))arctan(xyz , ,而而xey , ,求求dxdz. .四、設(shè)四、設(shè)),(22xyeyx

25、fz ( (其其具具中中f有一階連續(xù)偏導(dǎo)有一階連續(xù)偏導(dǎo) 數(shù)數(shù)) ), ,求求yzxz ,. .五、設(shè)五、設(shè))(xyzxyxfu ,(,(其其具具中中f有一階連續(xù)偏導(dǎo)有一階連續(xù)偏導(dǎo) 數(shù)數(shù)),),求求.,zuyuxu 六、設(shè)六、設(shè)),(yxxfz ,(,(其其具具中中f有二階連續(xù)偏導(dǎo)數(shù)有二階連續(xù)偏導(dǎo)數(shù)),),求求 22222,yzyxzxz . .48七、設(shè)七、設(shè),)(22yxfyz 其中為可導(dǎo)函數(shù)其中為可導(dǎo)函數(shù), , 驗證驗證: :211yzyzyxzx . .八、設(shè)八、設(shè) ,),(其中其中yyxxz 具有二階導(dǎo)數(shù)具有二階導(dǎo)數(shù), ,求求 .,2222yzxz 49一、一、1 1、xyyyyxxx

26、yxxxy222cos)cossin(cos,cos)sin(coscos ; 2 2、,)23(3)23ln(2222yyxxyxyx 2232)23(2)23ln(2yyxxyxyx ; 3 3、.)43(1)41(3232ttt 二、二、,)(22222222yxxyeyyxyxyxxz )(22222)(22yxxyeyxxyxyyz . .練習(xí)題答案練習(xí)題答案50三、三、xxexxedxdz221)1( . .四、四、.2,22121fxef yyzfyefxxzxyxy 五、五、.),(),1(fxyzuxzxfyuyzyfxu 六、六、,12222121122fyfyfxz ,1

27、)1(22221222fyfyfyxyxz .222422322fyxfyxyz 51八八、,)1(121122 xz 222111221122)( yz. .520),(. 1 yxF四、隱函數(shù)求導(dǎo)四、隱函數(shù)求導(dǎo)隱函數(shù)存在定理隱函數(shù)存在定理 1 1 設(shè)函數(shù)設(shè)函數(shù)),(yxF在點在點),(00yxP的的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00 yxF,0),(00 yxFy,則方程,則方程0),( yxF在點在點),(00yxP的的某一鄰域內(nèi)恒能唯一確定一個單值連續(xù)且具有連續(xù)某一鄰域內(nèi)恒能唯一確定一個單值連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù)導(dǎo)數(shù)的函數(shù))(xfy ,它滿足條件

28、,它滿足條件)(00 xfy ,并,并有有 yxFFdxdy . .隱函數(shù)的求導(dǎo)公式隱函數(shù)的求導(dǎo)公式53例例驗驗證證方方程程0122 yx在在點點)1 , 0(的的某某鄰鄰域域內(nèi)內(nèi)能能唯唯一一確確定定一一個個單單值值可可導(dǎo)導(dǎo)、且且0 x時時1 y的的隱隱函函數(shù)數(shù))(xfy ,并并求求這這函函數(shù)數(shù)的的一一階階和和二二階階導(dǎo)導(dǎo)數(shù)數(shù)在在0 x的的值值.解解令令1),(22 yxyxF則則,2xFx ,2yFy , 0)1 , 0( F, 02)1 , 0( yF依依定定理理知知方方程程0122 yx在在點點)1 , 0(的的某某鄰鄰域域內(nèi)內(nèi)能能唯唯一一確確定定一一個個單單值值可可導(dǎo)導(dǎo)、且且0 x時時

29、1 y的的函函數(shù)數(shù))(xfy 54函函數(shù)數(shù)的的一一階階和和二二階階導(dǎo)導(dǎo)數(shù)數(shù)為為yxFFdxdy ,yx , 00 xdxdy222yyxydxyd 2yyxxy ,13y . 1022 xdxyd55例例 2 2 已知已知xyyxarctanln22 ,求,求dxdy.解解令令則則,arctanln),(22xyyxyxF ,),(22yxyxyxFx ,),(22yxxyyxFy yxFFdxdy .xyyx 56隱函數(shù)存在定理隱函數(shù)存在定理2 2 設(shè)函數(shù)設(shè)函數(shù)),(zyxF在點在點,(0 xP),00zy的某一鄰域內(nèi)有連續(xù)的偏導(dǎo)數(shù),且的某一鄰域內(nèi)有連續(xù)的偏導(dǎo)數(shù),且,(0 xF0),00 z

30、y,0),(000 zyxFz,則方程,則方程,(yxF0) z在點在點),(000zyxP的某一鄰域內(nèi)恒能唯一確的某一鄰域內(nèi)恒能唯一確定一個單值連續(xù)且具有連續(xù)偏導(dǎo)數(shù)的函數(shù)定一個單值連續(xù)且具有連續(xù)偏導(dǎo)數(shù)的函數(shù)),(yxfz ,它滿足條件,它滿足條件),(000yxfz ,并有并有 zxFFxz , zyFFyz . .0),(. 2 zyxF57例例 3 3 設(shè)設(shè)04222 zzyx,求求22xz .解解令令則則,4),(222zzyxzyxF ,2xFx , 42 zFz,2zxFFxzzx 22xz 2)2()2(zxzxz 2)2(2)2(zzxxz .)2()2(322zxz 58例例

31、 4 4 設(shè)設(shè)),(xyzzyxfz ,求求xz ,yx ,zy .思路:思路:把把z看成看成yx,的函數(shù)對的函數(shù)對x求偏導(dǎo)數(shù)得求偏導(dǎo)數(shù)得xz ,把把x看看成成yz,的的函函數(shù)數(shù)對對y求求偏偏導(dǎo)導(dǎo)數(shù)數(shù)得得yx ,把把y看成看成zx,的函數(shù)對的函數(shù)對z求偏導(dǎo)數(shù)得求偏導(dǎo)數(shù)得zy .解解令令, zyxu ,xyzv 則則),(vufz 59把把z看成看成yx,的函數(shù)對的函數(shù)對x求偏導(dǎo)數(shù)得求偏導(dǎo)數(shù)得xz )1(xzfu ),(xzxyyzfv 整理得整理得xz ,1vuvuxyffyzff 把把x看成看成yz,的函數(shù)對的函數(shù)對y求偏導(dǎo)數(shù)得求偏導(dǎo)數(shù)得)1(0 yxfu),(yxyzxzfv 60整理得整

32、理得,vuvuyzffxzff yx 把把y看成看成zx,的函數(shù)對的函數(shù)對z求偏導(dǎo)數(shù)得求偏導(dǎo)數(shù)得)1(1 zyfu),(zyxzxyfv 整理得整理得zy .1vuvuxzffxyff 61 0),(0),(vuyxGvuyxF3、方程組的情形、方程組的情形隱函數(shù)存在定理隱函數(shù)存在定理 3 3 設(shè)設(shè)),(vuyxF、),(vuyxG在在點點),(0000vuyxP的某一鄰域內(nèi)有對各個變量的連續(xù)的某一鄰域內(nèi)有對各個變量的連續(xù)偏導(dǎo)數(shù),且偏導(dǎo)數(shù),且0),(0000 vuyxF, ,),(0000vuyxG0 ,且偏導(dǎo)數(shù)所組成的函數(shù)行列式,且偏導(dǎo)數(shù)所組成的函數(shù)行列式(或稱雅可比(或稱雅可比式)式) v

33、GuGvFuFvuGFJ ),(),(62在點在點),(0000vuyxP不等于零,則方程組不等于零,則方程組 0),( vuyxF、 0),( vuyxG在點在點),(0000vuyxP的某一鄰域內(nèi)恒能唯一確定一的某一鄰域內(nèi)恒能唯一確定一組單值連續(xù)且具有連續(xù)偏導(dǎo)數(shù)的函數(shù)組單值連續(xù)且具有連續(xù)偏導(dǎo)數(shù)的函數(shù)),(yxuu ,),(yxvv ,它們滿足條件,它們滿足條件),(000yxuu , ,vv 0),(00yx,并有,并有,),(),(1vuvuvxvxGGFFGGFFvxGFJxu 63vuvuxuxuGGFFGGFFxuGFJxv ),(),(1,),(),(1vuvuvyvyGGFFG

34、GFFvyGFJyu .),(),(1vuvuyuyuGGFFGGFFyuGFJyv 64例例5 5 設(shè)設(shè)0 yvxu,1 xvyu, 求求 xu ,yu ,xv 和和yv .解解1直接代入公式;直接代入公式;解解2運用公式推導(dǎo)的方法,運用公式推導(dǎo)的方法,將所給方程的兩邊對將所給方程的兩邊對 求導(dǎo)并移項求導(dǎo)并移項x, vxvxxuyuxvyxuxxyyxJ ,22yx 65在在0 J的條件下,的條件下,xyyxxvyuxu ,22yxyvxu xyyxvyuxxv ,22yxxvyu 將所給方程的兩邊對將所給方程的兩邊對 求導(dǎo),用同樣方法得求導(dǎo),用同樣方法得y,22yxyuxvyu .22yxyvxuyv 66(分以下幾種情況)(分以下幾種情況)隱函數(shù)的求導(dǎo)法則隱函數(shù)的求導(dǎo)法則0),()1( yxF0),()2( zyxF 0),(0),()3(vuyxGvuy

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論