版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、PART 3Inviscid, Compressible FlowE-mail: 2012.10Department of Fluid Mechanics, School of Aeronautics,Northwestern Polytechnicl University, Xian, China1CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS第八章 正激波及有關(guān)問題Shock wave: A large-amplitude compression wave, such as that produced by an explosion, cau
2、sed by supersonic motion of a body in a medium. 激波是一個(gè)大振幅波,如由爆炸產(chǎn)生的波或物體在介質(zhì)中超音速運(yùn)動(dòng)而引起的波.煉油廠爆炸引起的沖擊波氫彈爆炸引起的沖擊波2補(bǔ)充知識(shí):擾動(dòng):氣體中的某一點(diǎn)的壓強(qiáng)、密度和溫度等參數(shù)發(fā)生了改變,成為氣體受到了擾動(dòng)。弱擾動(dòng):如果參數(shù)的變化與原來的參數(shù)相比是極其微小的,稱為弱擾動(dòng)。否則是強(qiáng)擾動(dòng)。如聲波是弱擾動(dòng)波,激波是強(qiáng)擾動(dòng)波。弱擾動(dòng)波在空氣中以聲速傳播,強(qiáng)擾動(dòng)波以超音速傳播。3激波(sock wave):可壓縮流體在一定條件下的流動(dòng)狀態(tài)的突然改變,它只出現(xiàn)在超音速流動(dòng)中-或者說,激波相對(duì)于上游流動(dòng),永遠(yuǎn)是超音速的
3、。流體穿過激波后,產(chǎn)生很大的壓力的突升,密度和溫度也發(fā)生突然變化;所有的激波都是壓縮波,對(duì)流體產(chǎn)生壓縮作用,是強(qiáng)擾動(dòng)波,物理上不存在膨脹激波。4激波是瞬態(tài)壓縮,因此不可能是可逆過程。壓縮流體所需的能量來自上游流體的動(dòng)能,動(dòng)能轉(zhuǎn)化為內(nèi)能,波后熵增加,做有用功的能力下降。激波非常薄,只有幾個(gè)分子自由程的厚度。認(rèn)為流動(dòng)參數(shù)在激波處發(fā)生間斷。本課程只研究激波前后的參數(shù)變化,不研究激波內(nèi)的變化過程。5我有1個(gè)大氣壓跨過薄薄的激波,我變成了20個(gè)大氣壓!Shock!6激波分類: 正激波(Normal Shock Wave):波面垂直于流動(dòng)方向 斜激波(Oblique Shock Wave):波面與流動(dòng)方向
4、的夾角小于9078.1 INTRODUCTIONThe purpose of this chapter and Chap.9 is to develop shock-wave theory, thus giving us the means to calculate the changes in the flow properties across a wave.本章和第九章的目的是推導(dǎo)激波理論,因而得出計(jì)算通過激波的流動(dòng)特性變化量的公式。Normal shock waves occur frequently in nature.The study of normal shacks waves
5、 is important.8Road map for chap. 8:98.2正激波基本控制方程的推導(dǎo)8.3聲速8.4能量方程的特殊形式8.5什么情況下流動(dòng)是可壓縮的?8.6用于計(jì)算通過正激波氣體特性變化的方程的詳細(xì)推導(dǎo); 物理特性變化趨勢(shì)的討論8.7用皮托管測(cè)量可壓縮流的流動(dòng)速度圖8.2 第八章路線圖10You will know in this chapter1. The control equations cross the normal shock waves.2. How to calculate the speed of sound and what does it depend
6、 on?3. The relation between the speed of sound and the compressibility.4. The physical meaning of speed of sound and mach number.5. The energy equations empressed by speed of sound and temperature.6. Isentropic flow properties calculation.7. The relation between compressibility and mach number.8. Ho
7、w to calculate the normal shock waves properties.9. The principle of pitot tube in subsonic and supersonic flow.11 (a)運(yùn)動(dòng)的正激波 (c)壓強(qiáng)和速度分布VsxP11T1P22T2V2RV1R=0 (b)靜止的正激波(d)壓強(qiáng)和速度分布P11T1P22T2V2V1xPVxxPVxPVxxPVPVxx+(-Vs)非定常流動(dòng)定常流動(dòng)正激波流動(dòng)模型8.2 THE BASIC NORMAL SHOCK EQUATIONS正激波的基本方程非定常流動(dòng)定常流動(dòng)非定常流動(dòng)定常流動(dòng)12假設(shè)流動(dòng):1
8、.The flow is steady, i.e. /t = 0. 流動(dòng)是定常的。2.The flow is adiabatic: no heat is added or taken away from the control volume. 流動(dòng)是絕熱的,沒有加入和帶出控制體的熱量。3.There are no viscous effects on the sides of the control volume.控制體的邊界上沒有粘性的作用。4.There are no body forces; f=0。沒有體積力。通過激波的流動(dòng),是無外功無粘絕熱流。13Consider the recta
9、ngular control volume abcd given by the dashed line in Fig.8.3. The shock wave is inside the control volume.考慮矩形控制體abcd如圖8.3虛線所示,激波在控制體內(nèi)。We apply the integral form of conservation equations to this control volume. 我們對(duì)這個(gè)控制體應(yīng)用積分形式動(dòng)量方程。14思考: 可不可以選擇一個(gè)無限小的流體微團(tuán)作為研究對(duì)象,列出微分形式的方程? 為何選用當(dāng)?shù)赜^點(diǎn)的控制體而不選用隨體觀點(diǎn)的控制體?15
10、連續(xù)方程:(8.1)(8.2)或流動(dòng)是一維定常流動(dòng):16動(dòng)量方程:(8.3)(8.6)17能量方程:(8.7)(8.10)18定常,絕熱,無粘,量熱完全氣體連續(xù):動(dòng)量:能量:狀態(tài)方程:焓:(8.2)(8.6)(8.10)19Discussion: Finally, we note that Eqs. (8.2),(8.6),(8.10) are not limited to normal shock waves; they describe the changes that take place in any steady, adiabatic, inviscid flow where onl
11、y one direction is involved. That is, in Fig. 8.3 the flow is in the x direction only . This type of flow, where the flow-field variables are functions of x only, p= p(x), u=u(x),etc., is defined as one-dimensional flow. Thus, Eqs. (8.2),(8.6),(8.10) are governing equations for one-dimensional, stea
12、dy, adiabatic, inviscid flow.20討論: 最后,我們應(yīng)注意,方程(8.2),(8.6),(8.10) 并不只適用于正激波,他們描述了只包含一個(gè)方向的定常、絕熱、無粘流動(dòng)。在圖8.3中,流動(dòng)只沿x方向進(jìn)行。 這種類型的流動(dòng)被定義為一維流動(dòng),其流場(chǎng)變量只是x的函數(shù)p= p(x), u=u(x),等等。因此,方程(8.2),(8.6),(8.10) 是一維、定常、絕熱、無粘流動(dòng)的控制方程。21The purpose of this section is to address these questions: 本節(jié)的目的就是要回答、討論這些問題: What is the p
13、hysical mechanism of the propagation of sound waves? 聲波傳播的物理機(jī)理是什么? How can we calculate the speed of sound? 我們?cè)鯓佑?jì)算聲音的速度? What properties of the gas does it depend on? 聲速由氣體的什么特性決定?8.3 SPEED OF SOUND 音速(聲速)22聲波,聲速物理中:對(duì)于彈性介質(zhì)(流體和固體),只要對(duì)它施加一個(gè)任意的小擾動(dòng),就會(huì)在介質(zhì)中引起微小的壓力增量(或應(yīng)力增量),以波的形式向四周傳播,這小擾動(dòng)波叫聲波,小擾動(dòng)傳播的速度稱為聲速
14、。聲波的傳播機(jī)理23The physical mechanism of sound propagation in a gas is based on molecular motion. 聲音在氣體中的傳播機(jī)理基于分子的運(yùn)動(dòng)。For example: firecracker goes off. 例如:點(diǎn)燃爆竹分子間能量傳播的多米諾效應(yīng)。注:1、注意區(qū)分介質(zhì)本身微觀的運(yùn)動(dòng)速度和宏觀的聲波傳播速度。2、空氣中分子無規(guī)則運(yùn)動(dòng)的平均速度為 。3、聲速約為分子無規(guī)則運(yùn)動(dòng)速度的3/4.4、可以設(shè)想:聲速只與溫度有關(guān)?24Although the propagation of sound is due to
15、molecular collisions, we do not use such a microscopic picture for our derivation. Rather, we take advantage of the fact that the macroscopic properties p, T, ,etc., change across the wave, and we use our macroscopic equations of continuity, momentum, and energy to analyze these changes.盡管聲音的傳播是由于分子
16、碰撞引起的,我們?cè)谕茖?dǎo)氣體音速的方程時(shí)并不采用這一微觀物理畫面.相反,我們利用氣體的宏觀性 p, T, 等 通過聲波將發(fā)生變化這一事實(shí), 應(yīng)用連續(xù)、動(dòng)量、能量宏觀方程來分析這些變化。Calculation of the speed of sound25圖8.4a 聲波在靜止氣體中傳播圖8.4b 運(yùn)動(dòng)氣體中的靜止聲波26Consider a sound wave propagating through a stagnant gas with velocity a, as sketched in Fig. 8.4a. Here, the sound wave is moving from righ
17、t to left into a stagnant gas (region 1), where the local pressure, temperature, and density are p, T, and , respectively. Behind the sound wave (region 2), the gas properties are slightly different and given by p + dp, T + dT, and + d, respectively. 假設(shè)聲波在氣體中以速度a在靜止氣體中傳播,如圖8.4a所示。這里,聲波從右向左進(jìn)入當(dāng)?shù)貕簭?qiáng)、溫度和
18、密度分別為p, T, and 的靜止氣體區(qū)(區(qū)域1)。在聲波之后(區(qū)域2),其氣體的性質(zhì)與區(qū)域1的氣體性質(zhì)有微小的不同,分別用p + dp, T + dT, 和 + d來表示。 27Now imagine that you hop on the wave and ride with it. When you look upstream, into region 1, you see the gas moving toward you with a relative velocity a, as sketched in Fig. 8.4b. When you look downstream, i
19、nto region 2, you see the gas receding away from you with a relative velocity a + da, as also shown in Fig. 8.4b.想象你跳上聲波并乘波運(yùn)動(dòng), 這時(shí)你將看到上游(區(qū)域1)氣體以相對(duì)速度 a向你運(yùn)動(dòng), 。向下游(區(qū)域2)看時(shí),你看到氣體以相對(duì)速度a + da離你遠(yuǎn)去,同樣如圖8.4b所示。28采用圖8.4b進(jìn)行分析的優(yōu)點(diǎn)是:原來的非定常問題轉(zhuǎn)化成了定常問題,可以采用與圖8.3分析靜止正激波類似的方法分析聲波。Please note that the sound wave in Fig.
20、8.4b is nothing more than an infinitely weak normal shock wave.請(qǐng)注意,圖8.4b所示的聲波就是無限弱的正激波。29 聲波與激波的不同之處在于:通過激波流動(dòng)特性發(fā)生突變,是一個(gè)間斷(discontinuities),是一個(gè)絕熱但不等熵過程;通過聲波流動(dòng)特性發(fā)生無限小的微弱變化,流動(dòng)特性變化是連續(xù)的,是一個(gè)等熵過程。聲波可以看做無限弱的正激波聲波傳播過程為等熵過程 氣體中的波動(dòng)實(shí)質(zhì)上是氣體交替發(fā)生膨脹和壓縮的過程。由于這種過程進(jìn)行地非常迅速,以致介質(zhì)中發(fā)生波動(dòng)部分和其余部分之間來不及發(fā)生熱量交換,因此波動(dòng)的過程可視為絕熱過程。又由于波
21、動(dòng)引起的狀態(tài)變化很微弱(變量梯度?。纳F(xiàn)象(粘性與熱傳導(dǎo))的影響可以忽略不計(jì),因此聲波波動(dòng)過程可以進(jìn)一步視為等熵過程。30注: 1、聲波的傳播是等熵過程與流動(dòng)是否等熵?zé)o關(guān)! 2、在任何等熵或者不等熵的流動(dòng)中,聲波傳播的 過程均可視為等熵。 31對(duì)圖8.4b應(yīng)用連續(xù)方程:(8.11)忽略二階小量ddu:(8.12) (8.12b)32對(duì)圖8.4b應(yīng)用動(dòng)量方程:(8.13)略去二階及二階以上小量:(8.14)33(8.14)代入連續(xù)方程( ) 得:即:(8.17)(8.18)34(8.18)Equation (8.18) is a fundamental expression for the
22、speed of sound in a gas. 方程(8.18) 是氣體音速的一個(gè)基本表達(dá)式。35假設(shè)氣體是量熱完全的。對(duì)于這種情況,等熵關(guān)系式(7.32)成立。(8.19),(7.32)(8.20)(8.23)聲速和兩個(gè)狀態(tài)變量有關(guān)?36熱狀態(tài)方程:(8.25)which is our final expression for the speed of sound; it clearly states that the speed of sound in a calorically perfect gas is a function of temperature only. 是我們得到的聲
23、速計(jì)算公式的表達(dá)式;它清楚地表明,對(duì)于量熱完全氣體,聲速是溫度的唯一函數(shù)。(注:對(duì)完全氣體, 是溫度的函數(shù),同樣適用)有:對(duì)量熱完全氣體,聲速是溫度的唯一函數(shù)37補(bǔ)充:為何強(qiáng)調(diào)聲速的傳播是等熵過程?我是牛頓,我認(rèn)為聲波傳播是等溫的,我推導(dǎo)的聲速公式為我是拉普拉斯,我認(rèn)為聲波傳播是等熵的,我推導(dǎo)的聲速公式為38聲速與壓縮性的 關(guān)系(8.26)(8.27)或1)Equ.(8.27)relates the speed of sound to the compressibility of gas.2)The lower the compressibility, the higher the speed
24、 of sound.3)When (impressible flow), the speed sound is infinite.4)How to understand the relation between them? Conclusions:39聲速是氣體內(nèi)能的一個(gè)度量分子運(yùn)動(dòng)的平均速度 ,均方根速度所以有:可以看出:聲速的平方和氣體內(nèi)能的平方成正比,可以看做是分子熱運(yùn)動(dòng)能量,也就是氣體內(nèi)能的一個(gè)度量。40馬赫數(shù)的物理意義1、使用剛才的公式,有:2、對(duì)量熱完全氣體,氣流動(dòng)能和內(nèi)能之比為:內(nèi)能的度量1、馬赫數(shù)的平方正比于氣體動(dòng)能與內(nèi)能之比。2、馬赫數(shù)的平方可以看做對(duì)比氣體的宏觀流動(dòng)動(dòng)能和分
25、子無規(guī)則熱運(yùn)動(dòng)能量的度量。3、馬赫數(shù)低時(shí),宏觀流動(dòng)動(dòng)能只占分子熱運(yùn)動(dòng)能量很小的比例,不需要引入熱力學(xué)。41恩斯特馬赫(Ernst Mach,1838年1916年),奧地利物理學(xué)家、哲學(xué)家、心理學(xué)家、生物學(xué)家,1838年2月18日生于奇爾利茨。馬赫在研究氣體中物體的高速運(yùn)動(dòng)時(shí),發(fā)現(xiàn)了激波。馬赫確定了以物速與聲速的比值(即馬赫數(shù))為標(biāo)準(zhǔn),來描述物體的超音速運(yùn)動(dòng)。馬赫效應(yīng)、馬赫波、馬赫角等這些以馬赫命名的術(shù)語,在空氣動(dòng)力學(xué)中廣泛使用,這是馬赫在力學(xué)上的歷史性貢獻(xiàn)。在哲學(xué)上,馬赫是邏輯實(shí)證論者,并提出經(jīng)驗(yàn)主義。1883年力學(xué)及其發(fā)展的批判歷史概論(簡稱力學(xué)史評(píng))這部著作影響巨大,對(duì)物理學(xué)的發(fā)展產(chǎn)生了深
26、刻的影響。他在書中對(duì)牛頓的絕對(duì)時(shí)間、絕對(duì)空間的批判以及對(duì)慣性的理解,對(duì)愛因斯坦建立廣義相對(duì)論起過積極的作用,成為后者寫出引力場(chǎng)方程的依據(jù)。后來愛因斯坦把他的這一思想稱為馬赫原理。 42例8.1 一飛機(jī)飛行速度為259m/s。計(jì)算飛機(jī)在以下三個(gè)高度飛行時(shí)的馬赫數(shù):(a)海平面高度;(b)5公里高度;(c)10公里高度。(a)(b)(c)43例8.2 考慮例7.3流動(dòng)中的給定點(diǎn)。溫度為320K,速度為1000m/s。計(jì)算這一點(diǎn)的馬赫數(shù)。此例說明,馬赫數(shù)是流動(dòng)的當(dāng)?shù)貙傩?,在整個(gè)流場(chǎng)中是變化的,一點(diǎn)和一點(diǎn)不同。而例8.1計(jì)算的馬赫數(shù)是自由來流馬赫數(shù),是由飛行器的飛行速度和高度決定的。44例8.3 當(dāng)氣
27、流中一點(diǎn)的馬赫數(shù)為: (a) M=2; (b) M=20時(shí),計(jì)算氣流中此點(diǎn)的動(dòng)能與內(nèi)能之比。(a) (b) 45補(bǔ)充: 激波的形成活塞在半無限長的直管內(nèi)由0加速到(超音速)。PPPxxxt1t2t3c1c1c2+V c1c2+V c1c2+V c3+2V t1: V=0 V=V, 弱擾動(dòng)以當(dāng)?shù)匾羲賑1向右傳播,波后壓強(qiáng)增加t2: V=V V=2V, 弱擾動(dòng)以當(dāng)?shù)匾羲賑2+V向右傳播,波后壓強(qiáng)進(jìn)一步增加t3: V=2V V=3V, 弱擾動(dòng)以當(dāng)?shù)匾羲賑3+2V向右傳播,波后壓強(qiáng)進(jìn)一步增加 tn: V= V=V, 形成正激波,壓強(qiáng)急劇變化468.4 能量方程的各種特殊表達(dá)形式(8.28)沿流線內(nèi)能+
28、壓力勢(shì)能氣流的動(dòng)能微觀宏觀考慮兩個(gè)問題:在7.5節(jié)中我們得到了定常、絕熱、無粘流動(dòng)的能量方程:1、h=h(T),是否可用T表達(dá)能量方程?2、聲速是氣體內(nèi)能的一個(gè)度量,是否可用聲速表達(dá)能量方程?47對(duì)于我們現(xiàn)在研究的一維流動(dòng),能量方程為:However, keep in mind that all the subsequent results in this section hold in general along a streamline and are by no means limited to just one dimensional flows. 然而,應(yīng)當(dāng)記住的是:這一節(jié)中所有的結(jié)
29、論對(duì)于一般的沿流線的問題都適用,并不只是局限于一維流動(dòng)。 (8.29)48(8.30)溫度形式的能量方程49(8.31)(8.32)聲速形式的能量方程50stagnation speed of sound:滯止聲速(8.33)(8.34)右端的常數(shù)表明了流線上的能量。常常用某個(gè)參考 狀態(tài)下的物理量來表示,稱為特征常數(shù)??紤]方程(8.34)在駐點(diǎn)位置上,則u=0,則方程可以寫為:稱為滯止聲速。51In Equation (8.35), a and u are the speed of sound and velocity, respectively, at any point of flow,
30、and a* is a characteristic value associated with that same point.(8.35)characteristic speed of sound 臨界聲速如果能量方程右端的常數(shù)用速度為聲速時(shí)的狀態(tài)來描述:52注意: 1、臨界聲速不是當(dāng)?shù)芈曀佟?2、臨界聲速是和微觀運(yùn)動(dòng)和宏觀運(yùn)動(dòng)同時(shí)相關(guān)的量。 3、定常、絕熱、無粘流動(dòng)的流線上為常數(shù)。臨界溫度對(duì)應(yīng)于臨界聲速的溫度,稱為臨界溫度。53滯止聲速和臨界聲速(8.36)(8.37)Clearly, these defined quantities, a0 and a* , are both cons
31、tants along a given in a steady, adiabatic, inviscid flow. If all the streamlines emanate from the same uniform freestream conditions, then a0 and a* are constants throughout the entire flow field. 很明顯, a0 和 a*為定義的量, 沿定常、絕熱、無粘流動(dòng)的給定流線為常數(shù)。如果所有流線都來自于均勻自由來流,則a0 和 a*在整個(gè)流場(chǎng)為常數(shù)。沿一條流線上,有:54(8.38) 總溫的計(jì)算公式回憶7.
32、5節(jié)中總溫T0的定義,由方程(8.30)可得:(8.39)Equation (8.38) provides a formula from which the defined total temperature T0 can be calculated from the given actual conditions of T and u at any given points in a general flow field. 方程(8.38) 給出了由流場(chǎng)中給定點(diǎn)處的實(shí)際溫度T和速度u計(jì)算總溫T0的計(jì)算公式。55能量方程總參數(shù)定義兩條路線56(8.40)Equation (8.40) is v
33、ery important; it states that only M (and ,of course, the value of ) dictates the ratio of total temperature to static temperature. 方程(8.40)非常重要;表明只有馬赫數(shù)(及 的值)決定總溫與靜溫的比。 For a calorically perfect gas, the ratio of total temperature to static temperature, is a function of Mach number only, as follows:
34、 (對(duì)于量熱完全氣體,總溫和靜溫的比 是馬赫數(shù)的唯一函數(shù),證明如下:)57 總壓、總密度的計(jì)算公式:回憶7.5節(jié)總壓和總密度的定義, 在定義中包含了將氣流速度等熵地壓縮為零速度。由(7.32)式, 我們有:(8.41)(8.42)(8.43)方程(8.42)和(8.43)表明:總壓靜壓比 、總密度靜密度比 只由M 和 決定。因此,對(duì)于給定氣體,即給定 , 、 只依賴于馬赫數(shù)。58 Equation (8.40),(8.42)and (8.43) are very important; they should be branded on your mind. They provided form
35、ulas from which the defined , can be calculated from the actual conditions of M ,T ,p and at a given point in general flow field (assuming calorically perfect gas). They are so important that values of and obtained from Eqs. (8.40),(8.42), and (8.43), respectively , are tabulated as functions of M i
36、n App.A for (which corresponds to air at standard conditions).(8.42)(8.43)(8.40)59方程(8.40),(8.42)和(8.43) 非常重要;應(yīng)牢記于心。他們給出了對(duì)于量熱完全氣體的任意流場(chǎng),由某一給定點(diǎn)實(shí)際的M ,T ,p 和 的值來計(jì)算定義的量 和 的公式。正因?yàn)槠渲匾?,附錄A列表給出了 隨馬赫數(shù)M變化的函數(shù)關(guān)系。(對(duì)應(yīng) 的標(biāo)準(zhǔn)大氣條件)60對(duì)于 : 臨界參數(shù)的定義與計(jì)算公式臨界參數(shù)的定義:Consider a point in a general flow where the velocity is exac
37、tly sonic, i.e. where M=1. Denote the static temperature , pressure, and density at this sonic condition as T*,p*, and *,respectively.考慮流場(chǎng)中速度恰好為音速的這一點(diǎn),即M=1 的點(diǎn)。我們稱這一點(diǎn)(音速條件)的靜溫、靜壓、靜密度為臨界參數(shù),用T*、p*和*表示。(8.44)(8.45)(8.46)61 特征馬赫數(shù)(速度系數(shù))M*的定義及計(jì)算公式In the theory of supersonic flow, it is sometimes convenient
38、 to introduce a “characteristic” Mach number, M*, defined as: 在超音速流理論中, 有時(shí)引入”特征”馬赫數(shù)(也被稱為速度系數(shù)), 其定義如下:Where a* is the value of the speed of sound at sonic conditions, not the actual local value. a* 是音速條件(流動(dòng)速度u=a*時(shí))的音速值。62下面利用能量方程(8.35)得到M與M*的關(guān)系:(8.35)(8.47)(8.48)63There, M* acts qualitatively in the
39、same fashion as M except M* approaches a finite value when the actual Mach number approaches infinity.可以證明,除了當(dāng) 時(shí), M*與M定性一致。64小結(jié):In summary, a number of equations have been derived in this section, all of which stem in one fashion or another from the basic energy equation for steady, inviscid, adiaba
40、tic flow.65Example 8.4 用本節(jié)推導(dǎo)出的公式解Example 7.3 。(Example 7.3 氣流中一點(diǎn)處的壓強(qiáng)、溫度和速度分別為1atm, 320K,1000m/s。計(jì)算這一點(diǎn)的總溫和總壓。)解:例8.2中解得當(dāng)?shù)伛R赫數(shù)為2.79;由公式(8.40)得:66Example 8.5 Consider a point in an airflow where local Mach number, static pressure, static temperature are 3.5, 0.3atm, and 180K, respectively. Calculate the
41、 local values of p0, T0, T*, a*, and M* at this point.已知:M=3.5P=0.3atmT=180求:P0 ?T0 ?T*? a*?M*?67解:可以查表A, 也可以直接用公式計(jì)算。也可以用公式 (8.48)計(jì)算M*:68Example 8.6 如圖8.5所示翼型流動(dòng),假設(shè)流動(dòng)為等熵流動(dòng),計(jì)算點(diǎn)1處的當(dāng)?shù)伛R赫數(shù)。查表A:得 M=0.969Example 8.7 如圖8.5所示翼型流動(dòng),假設(shè)流動(dòng)為等熵流動(dòng),當(dāng)自由來流的溫度T=59oF時(shí),計(jì)算點(diǎn)1處的速度。T=59V1=?M1A1?T1?T 等熵流動(dòng)708.5 WHEN IS A FLOW CO
42、MPRESSIBLE? 什么條件下流動(dòng)是可壓縮的?We have stated several times in the preceding chapters the rule of thumb that a flow can be reasonably assumed to be incompressible when M0.3. Why?即71結(jié)論:72(3.12)Hence, the degree by which deviates from unity as shown in Fig.8.5 is related to the same degree by which the frac
43、tional pressure change for a given dV/V.對(duì)于一個(gè)給定的速度變化, 的變化對(duì)壓強(qiáng)的影響:73舉例1:儲(chǔ)氣室中 的氣體在管道出口處等熵加速到106.7m/s, 出口處壓力用不可壓假設(shè)和可壓流假設(shè)的計(jì)算結(jié)果分別為:不可壓:可壓縮:相對(duì)誤差:此時(shí)的馬赫數(shù):74舉例2:儲(chǔ)氣室中 的氣體在管道出口處等熵加速到274.3m/s, 出口處壓力用不可壓假設(shè)和可壓流假設(shè)的計(jì)算結(jié)果分別為:不可壓:可壓縮:相對(duì)誤差:此時(shí)的馬赫數(shù):758.6 CALCULATION OF NORMAL SHOCK-WAVE PROPERTIES 正激波性質(zhì)的計(jì)算本節(jié)要點(diǎn):計(jì)算通過正激波的流動(dòng)特性
44、變化76復(fù)習(xí)我們?cè)?.2節(jié)中推導(dǎo)出的正激波基本方程:(8.2)(8.6)(8.10)(8.49)(8.50)Examining the five equations given above, we see that they involve five unknowns, namely, 2,u2,p2,h2,and T2. Hence, Eqs.(8.2) , (8.6), (8.10), (8.49),and (8.50) are sufficient for determining the properties behind a normal shock wave in a caloric
45、ally perfect gas. Let us proceed. 77連續(xù)方程動(dòng)量方程(8.36)(8.55)(8.48)(8.59)78說明3: 方程(8.59)是我們得到的第一個(gè)主要正激波關(guān)系式,表明波后馬赫數(shù)M2是波前馬赫數(shù)M1和比熱比的函數(shù)。說明4:對(duì)給定流體, 確定,波后馬赫數(shù)M2是波前馬赫數(shù)M1的唯一函數(shù)(8.59)說明1:M1*1,則M2*0 for a normal shock wave. Hence, Eq. (8.73) states that p0,20 ,因此,式(8.73)表明: p0,2p0,1。 通過正激波總壓降低,且通過正激波總壓比 p0,2/p0,1 只是波
46、前馬赫數(shù) M1 的函數(shù)。經(jīng)過激波,氣體做有用功的能力下降。97 至此,我們已經(jīng)全部回答了本節(jié)開始提出的問題:這些關(guān)系式在附錄B中以列表形式給出。98In summary, we have now verified the qualitative changes across a normal shock wave as sketched in Fig.7.4b and as originally discussed in Sec. 7.6. 圖8.899Example 8.8 Consider a normal shock wave in air where the upstream flow
47、 properties are u1=680m/s, T1=288k, and p1=1atm. Calculate the velocity, temperature, and pressure downstream of the shock. Sloution100查表B: 對(duì)于M1=2, 有:所以:101Example 8.9 超音速流中的正激波上游壓強(qiáng)為1atm,計(jì)算在上游馬赫數(shù)分別為(a)M1=2和(b)M1=4時(shí),通過正激波的總壓損失。比較兩種結(jié)果并討論.ABA思路1:思路2:BB思路3:102(b) M1=4(a) M1=210324104Example 8.10 如圖8.9所示
48、沖壓發(fā)動(dòng)機(jī),其進(jìn)氣道入口前有一脫體激波。點(diǎn)1之前的激波為正激波。氣流通過激波后由點(diǎn)1至點(diǎn)2的流動(dòng)是等熵的。沖壓發(fā)動(dòng)機(jī)的飛行高度是10km,飛行馬赫數(shù)為2,大氣壓強(qiáng)和溫度分別為2.65104N/m2和223.3K。當(dāng)點(diǎn)2處的馬赫數(shù)為0.2時(shí),計(jì)算該點(diǎn)處氣體的溫度和壓強(qiáng)。105106解: 由附錄A,可查表得M=2時(shí)的p0,/p,T0,/T正激波后1點(diǎn)的總壓,可查附表B得到,M=2時(shí) p0, 1 /p0, =0.7209107由點(diǎn)1至點(diǎn)2為等熵流動(dòng),因此總壓,總溫不變。在點(diǎn)2M=0.2,查附表A,可得p 0,2/p2, T 0,2/T2108Example 8.11 飛行馬赫數(shù)為10,其它條件和例8
49、.10相同。當(dāng)點(diǎn)2處的馬赫數(shù)為0.2時(shí),計(jì)算該點(diǎn)處氣體的溫度和壓強(qiáng)。109解: 由附錄A,可查表得M=10時(shí)的p0,/p,T0,/T正激波后1點(diǎn)的總壓,可查附表B得到,M=10時(shí)p0, 1 /p0, =0.304510-2110由點(diǎn)1至點(diǎn)2為等熵流動(dòng),因此總壓,總溫不變。在點(diǎn)2M=0.2,查附表A,可得p 0,2/p2, T0,2/T211110馬赫2馬赫1128.7 MEASUREMENT OF VELOCITY IN A COMPRESSIBLE FLOW 可壓縮流動(dòng)的速度測(cè)量8.7.1 Subsonic Compressible Flow 亞音速可壓縮流(8.42)(8.74)(8.75
50、)113(8.75)From Eq. (8.75) , we see that , unlike incompressible flow, a knowledge of p0,1 and p1 is not sufficient to obtain u1; we also need the freestream speed of sound, a1.從(8.75)式可以看到:與不可壓縮流不同,只知道p0,1 和 p1 還不足以得到速度u1;我們還需要知道自由流的音速: a1。注:對(duì)于飛機(jī)來說,此處的波前靜壓p1為以激波為參考點(diǎn)的自由來流靜壓。也就是地面觀察者來說,靜止氣體的總壓。1148.7.
51、2 Supersonic Flow 超音速流Fig. 8.8 A Pitot tube in supersonic flow115A fluid element moving along streamline cde will first decelerated nonisentropically to a subsonic velocity at point b just behind the shock . Then it is is isentropically compressed to zero velocity at point e. As a result, the pressu
52、re at point e is not the total pressure of the freestream but rather the total pressure behind a normal shock wave, p0,2. This is the Pitot pressure read at the end of the tube. 沿流線 cde 的流體微團(tuán)首先非等熵地在 d點(diǎn)減速為亞音速,然后被等熵地在e點(diǎn)壓縮為駐點(diǎn)速度零。因此, e點(diǎn)的壓強(qiáng)不是自由流的總壓而是正激波后的總壓 p0,2。這是 皮托管測(cè)得的總壓。116Keep in mind that because o
53、f the entropy increase across the shock, there is a loss in total pressure across the shock, p0,2p0,1. However, knowing p0,2 and the freestream static pressure p1 is still sufficient to calculate the freestream Mach number M1,as follows:一定要記住的是:由于通過激波引起熵增,所以通過激波會(huì)有總壓損失, p0,2p0,1。然而,知道 p0,2 和自由來流靜壓p1,
54、仍足以使我們計(jì)算出自由來流馬赫數(shù)M1,方法如下:117(8.79)(8.80)(8.76)(8.77)(8.78)118(8.80)Equation (8.80) is called the Rayleigh Pitot tube formula. It relates the Pitot pressure p0,2 and the freestream static pressure p1 to the freestream Mach number M1. Equation (8.80) gives M1 as an implicit function of p0,2/p1 and allo
55、ws the calculation of M1 from known p0,2/p1. For convenience in making calculations, the ratio p0,2/p1 is tabulated versus M1 in App.B. (8.80)式被稱為雷利皮托管公式。它將皮托管測(cè)得的總壓p0,2 和自由來流靜壓p1與自由來流馬赫數(shù)M1 聯(lián)系起來了。(8.80)式中M1為p0,2/p1 的隱式函數(shù),可以由p0,2/p1 的值計(jì)算出M1 。為方便應(yīng)用, 附錄B給出了p0,2/p1 隨M1的變化表。119討論:上述公式中,必須使用波前的靜壓p1。這個(gè)p1是如何
56、測(cè)量的?1、當(dāng)氣流平行于某一個(gè)平面,那么在垂直平面的方向上沒有壓力的變化。此時(shí)在平面上開設(shè)靜壓孔,測(cè)量的壓力即為P1。2、當(dāng)皮托管使用于超音速流動(dòng)中沒有靜壓孔時(shí),在激波之后,由于膨脹波的作用,在激波之后會(huì)很快恢復(fù)到波前的靜壓P1,可以使用皮托管壁面上的靜壓孔測(cè)量。1203、飛行中的飛行器。飛行中的飛行器,P1為激波前的靜壓,也就是相對(duì)于地面觀察者來說,靜止氣體的壓力。可以通過飛行高度查表得到。121Example8.12 A pitot tube is inserted into an airflow where the static pressure is 1atm. Calculate the flow Mach Number when the Pitot tube measures (a) 1.276atm; (b)2.714atm; (c) 12.06atm. 122解: 首先我們必須確定流動(dòng)是亞音速的還是超音速的。當(dāng)馬赫數(shù)為1時(shí),皮托管測(cè)出的總壓為p0=p/0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年臨時(shí)倉儲(chǔ)設(shè)施租賃及管理服務(wù)合同
- 標(biāo)準(zhǔn)新工程設(shè)計(jì)合同樣本
- 2024年多人合伙共盈合同書范本
- 2024年度智能倉庫設(shè)備安裝合同
- 代銷協(xié)議書范例2024
- 全面房屋裝修合同模板集成
- 出口業(yè)務(wù)代理協(xié)議范本
- 2024物流合同范本
- 常見勞務(wù)派遣委托協(xié)議樣本
- 廣州建設(shè)工程裝修施工合同范例
- 雅魯藏布江大拐彎巨型水電站規(guī)劃方案
- 廣西基本醫(yī)療保險(xiǎn)門診特殊慢性病申報(bào)表
- 城市經(jīng)濟(jì)學(xué)習(xí)題與答案
- 國開成本會(huì)計(jì)第14章綜合練習(xí)試題及答案
- 幼兒園大班科學(xué):《樹葉為什么會(huì)變黃》課件
- 1到50帶圈數(shù)字直接復(fù)制
- 鐵路工程施工組織設(shè)計(jì)(施工方案)編制分類
- 幼兒園中班數(shù)學(xué)《有趣的圖形》課件
- 《規(guī)劃每一天》教案2021
- 草莓創(chuàng)意主題實(shí)用框架模板ppt
- 山大口腔頜面外科學(xué)課件第5章 口腔種植外科-1概論、口腔種植的生物學(xué)基礎(chǔ)
評(píng)論
0/150
提交評(píng)論