版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、.;初高中的數(shù)學公式定理大集中(僅供參考) 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形
2、兩邊的差小于第三邊 17 三角形內角和定理 三角形三個內角的和等于180 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相
3、等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形
4、 36 推論 2 有一個角等于60的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 4
5、5逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2 ,那么這個三角形是直角三角形 48定理 四邊形的內角和等于360 49四邊形的外角和等于360 50多邊形內角和定理 n邊形的內角的和等于(n-2)180 51推論 任意多邊的外角和等于360 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定
6、理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角 61矩形性質定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質定理1 菱形的四條邊都相等 65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線
7、乘積的一半,即S=(ab)2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關于中心對稱的兩個圖形是全等的 72定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關于這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判
8、定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)2 S=Lh 83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S? 8
9、4 (2)合比性質 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性質 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)
10、相交,所構成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) 94 判定定理3 三邊對應成比例,兩三角形相似(SSS) 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等于相似比 97 性質定理2 相似三角形周長的比等于相似比 98 性質定理3 相似三角形面積的比等于相似比的平
11、方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點的距離等于定長的點的集合 102圓的內部可以看作是圓心的距離小于半徑的點的集合 103圓的外部可以看作是圓心的距離大于半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平
12、行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點確定一個圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所
13、對應的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90的圓周角所 對的弦是直徑 119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質定理 圓的切線垂直于經(jīng)過切點的半徑 124
14、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等于它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例
15、中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 134如果兩個圓相切,那么切點一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內切 d=R-r(Rr) 兩圓內含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公*弦 137定理 把圓分成n(n3): 依次連結各分點所得的多邊形是這個圓的內接正n邊形 經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 139正n邊形的每個內角都等于(n-2)18
16、0n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長 142正三角形面積3a4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360,因此k(n-2)180n=360化為(n-2)(k-2)=4 144弧長撲愎劍篖=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內公切線長= d-(R-r) 外公切線長= d-(R+r) (還有一些,大家?guī)脱a充吧) 實用工具:常用數(shù)學公式 公式分類 公式表達式 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(
17、a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式 b2-4ac=0 注:方程有兩個相等的實根 b2-4ac0 注:方程有兩個不等的實根 b2-4ac0 拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側面積 S=c*h 斜棱柱側面積 S=c*h 正棱錐側面積 S=1
18、/2c*h 正棱臺側面積 S=1/2(c+c)h 圓臺側面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h有定理,和證明數(shù)學定理 三角形三條邊的關系 定理:三角形兩邊的和大于第三邊 推論:三角形兩邊的差小于第三邊 三角形
19、內角和 三角形內角和定理 三角形三個內角的和等于180 推論1 直角三角形的兩個銳角互余 推論2 三角形的一個外角等于和它不相鄰的兩個內角和 推論3 三角形的一個外角大雨任何一個和它不相鄰的內角 角的平分線 性質定理 在角的平分線上的點到這個角的兩邊的距離相等 幾何語言: OC是AOB的角平分線(或者AOCBOC) PEOA,PFOB 點P在OC上 PEPF(角平分線性質定理) 判定定理 到一個角的兩邊的距離相等的點,在這個角的平分線上 幾何語言: PEOA,PFOB PEPF 點P在AOB的角平分線上(角平分線判定定理) 等腰三角形的性質 等腰三角形的性質定理 等腰三角形的兩底角相等 幾何語
20、言: ABAC BC(等邊對等角) 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 幾何語言: (1)ABAC,BDDC 12,ADBC(等腰三角形頂角的平分線垂直平分底邊) (2)ABAC,12 ADBC,BDDC(等腰三角形頂角的平分線垂直平分底邊) (3)ABAC,ADBC 12,BDDC(等腰三角形頂角的平分線垂直平分底邊) 推論2 等邊三角形的各角都相等,并且每一個角等于60 幾何語言: ABACBC ABC60(等邊三角形的各角都相等,并且每一個角都等于60) 等腰三角形的判定 判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等 幾何語言: BC ABAC(等角
21、對等邊) 推論1 三個角都相等的三角形是等邊三角形 幾何語言: ABC ABACBC(三個角都相等的三角形是等邊三角形) 推論2 有一個角等于60的等腰三角形是等邊三角形 幾何語言: ABAC,A60(B60或者C60) ABACBC(有一個角等于60的等腰三角形是等邊三角形) 推論3 在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半 幾何語言: C90,B30 BC AB或者AB2BC(在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半) 線段的垂直平分線 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 幾何語言: MNAB于C,ABBC,(
22、MN垂直平分AB) 點P為MN上任一點 PAPB(線段垂直平分線性質) 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 幾何語言: PAPB 點P在線段AB的垂直平分線上(線段垂直平分線判定) 軸對稱和軸對稱圖形 定理1 關于某條之間對稱的兩個圖形是全等形 定理2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 定理3 兩個圖形關于某直線對稱,若它們的對應線段或延長線相交,那么交點在對稱軸上 逆定理 若兩個圖形的對應點連線被同一條直線垂直平分,那這兩個圖形關于這條直線對稱 勾股定理 勾股定理 直角三角形兩直角邊a、b的平方和,等于斜邊c的平方,即 a2 b2
23、c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系,那么這個三角形是直角三角形 四邊形 定理 任意四邊形的內角和等于360 多邊形內角和 定理 多邊形內角和定理n邊形的內角的和等于(n 2)180 推論 任意多邊形的外角和等于360 平行四邊形及其性質 性質定理1 平行四邊形的對角相等 性質定理2 平行四邊形的對邊相等 推論 夾在兩條平行線間的平行線段相等 性質定理3 平行四邊形的對角線互相平分 幾何語言: 四邊形ABCD是平行四邊形 ADBC,ABCD(平行四邊形的對角相等) AC,BD(平行四邊形的對邊相等) AOCO,BODO(平行四邊形的對角線互相平分) 平行
24、四邊形的判定 判定定理1 兩組對邊分別平行的四邊形是平行四邊形 幾何語言: ADBC,ABCD 四邊形ABCD是平行四邊形 (兩組對邊分別平行的四邊形是平行四邊形) 判定定理2 兩組對角分別相等的四邊形是平行四邊形 幾何語言: AC,BD 四邊形ABCD是平行四邊形 (兩組對角分別相等的四邊形是平行四邊形) 判定定理3 兩組對邊分別相等的四邊形是平行四邊形 幾何語言: ADBC,ABCD 四邊形ABCD是平行四邊形 (兩組對邊分別相等的四邊形是平行四邊形) 判定定理4 對角線互相平分的四邊形是平行四邊形 幾何語言: AOCO,BODO 四邊形ABCD是平行四邊形 (對角線互相平分的四邊形是平行
25、四邊形) 判定定理5 一組對邊平行且相等的四邊形是平行四邊形 幾何語言: ADBC,ADBC 四邊形ABCD是平行四邊形 (一組對邊平行且相等的四邊形是平行四邊形) 矩形 性質定理1 矩形的四個角都是直角 性質定理2 矩形的對角線相等 幾何語言: 四邊形ABCD是矩形 ACBD(矩形的對角線相等) ABCD90(矩形的四個角都是直角) 推論 直角三角形斜邊上的中線等于斜邊的一半 幾何語言: ABC為直角三角形,AOOC BO AC(直角三角形斜邊上的中線等于斜邊的一半) 判定定理1 有三個角是直角的四邊形是矩形 幾何語言: ABC90 四邊形ABCD是矩形(有三個角是直角的四邊形是矩形) 判定
26、定理2 對角線相等的平行四邊形是矩形 幾何語言: ACBD 四邊形ABCD是矩形(對角線相等的平行四邊形是矩形) 菱形 性質定理1 菱形的四條邊都相等 性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 幾何語言: 四邊形ABCD是菱形 ABBCCDAD(菱形的四條邊都相等) ACBD,AC平分DAB和DCB,BD平分ABC和ADC (菱形的對角線互相垂直,并且每一條對角線平分一組對角) 判定定理1 四邊都相等的四邊形是菱形 幾何語言: ABBCCDAD 四邊形ABCD是菱形(四邊都相等的四邊形是菱形) 判定定理2 對角線互相垂直的平行四邊形是菱形 幾何語言: ACBD,AOCO,
27、BODO 四邊形ABCD是菱形(對角線互相垂直的平行四邊形是菱形) 正方形 性質定理1 正方形的四個角都是直角,四條邊都相等 性質定理2 正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 中心對稱和中心對稱圖形 定理1 關于中心對稱的兩個圖形是全等形 定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱 梯形 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 幾何語言: 四邊形ABCD是等腰梯形 AB,CD(等腰梯形在同一底上的兩個角相等) 等腰梯形判定定理 在
28、同一底上的兩個角相等的梯形是等腰梯形 幾何語言: AB,CD 四邊形ABCD是等腰梯形(在同一底上的兩個角相等的梯形是等腰梯形) 三角形、梯形中位線 三角形中位線定理 三角形的中位線平行與第三邊,并且等于它的一半 幾何語言: EF是三角形的中位線 EF AB(三角形中位線定理) 梯形中位線定理 梯形的中位線平行與兩底,并且等于兩底和的一半 幾何語言: EF是梯形的中位線 EF (ABCD)(梯形中位線定理) 比例線段 1、 比例的基本性質 如果abcd,那么adbc 2、 合比性質 3、 等比性質 平行線分線段成比例定理 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例 幾何
29、語言: lpa (三條平行線截兩條直線,所得的對應線段成比例) 推論 平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行與三角形的第三邊 垂直于弦的直徑 垂徑定理 垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧 幾何語言: OCAB,OC過圓心 (垂徑定理) 推論1 (1) 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 幾何語言: OCAB,ACBC,AB不是直徑 (平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?(2) 弦的垂直平分線過圓心,并且平分弦所對
30、的兩條弧 幾何語言: ACBC,OC過圓心 (弦的垂直平分線過圓心,并且平分弦所對的兩條?。?(3) 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 幾何語言: (平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條?。?推論2 圓的兩條平分弦所夾的弧相等 幾何語言:ABCD 圓心角、弧、弦、弦心距之間的關系 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距也相等 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等 圓周角 定理 一條弧所對的圓周角等于它所對的圓心角的一半
31、 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 推論2 半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直角 推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 圓的內接四邊形 定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角 幾何語言: 四邊形ABCD是O的內接四邊形 AC180,BADB180,BADE 切線的判定和性質 切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 幾何語言:l OA,點A在O上 直線l是O的切線(切線判定定理) 切線的性質定理 圓的切線垂直于經(jīng)過切點半徑 幾何語言:OA是O
32、的半徑,直線l切O于點A l OA(切線性質定理) 推論1 經(jīng)過圓心且垂直于切線的直徑必經(jīng)過切點 推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 切線長定理 定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 幾何語言:弦PB、PD切O于A、C兩點 PA=PC,APO=CPO(切線長定理) 弦切角 弦切角定理 弦切角等于它所夾的弧對的圓周角 幾何語言:BCN所夾的是 ,A所對的是 BCN=A 推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 幾何語言:BCN所夾的是 ,ACM所對的是 , = BCN=ACM 和圓有關的比例線段 相交弦定理:圓內的兩條相
33、交弦,被焦點分成的兩條線段長的積相等 幾何語言:弦AB、CD交于點P PAPB=PCPD(相交弦定理) 推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項 幾何語言:AB是直徑,CDAB于點P PC2=PAPB(相交弦定理推論) 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項 幾何語言:PT切O于點T,PBA是O的割線 PT2=PAPB(切割線定理) 推論 從圓外一點因圓的兩條割線,這一點到每條割線與圓的焦點的兩條線段長的積相等 幾何語言:PBA、PDC是O的割線 PT2=PAPB(切割線定理推論) 1 過兩點有且只有一條直線
34、2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個內角的和等于180
35、 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的
36、距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60的等腰三角形是等邊三角形 37 在直角
37、三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關
38、于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2 ,那么這個三角形是直角三角形 48定理 四邊形的內角和等于360 49四邊形的外角和等于360 50多邊形內角和定理 n邊形的內角的和等于(n-2)180 51推論 任意多邊的外角和等于360 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別
39、相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角 61矩形性質定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質定理1 菱形的四條邊都相等 65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(ab)2 67菱形判定定理1 四邊都相等的四邊形是菱
40、形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關于中心對稱的兩個圖形是全等的 72定理2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關于這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等
41、腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)2 S=Lh 83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性質
42、如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應相等,兩三角形
43、相似(ASA) 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) 94 判定定理3 三邊對應成比例,兩三角形相似(SSS) 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等于相似比 97 性質定理2 相似三角形周長的比等于相似比 98 性質定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值
44、 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓是定點的距離等于定長的點的集合 102圓的內部可以看作是圓心的距離小于半徑的點的集合 103圓的外部可以看作是圓心的距離大于半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點確定一個圓。 110垂
45、徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半 117
46、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90的圓周角所 對的弦是直徑 119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質定理 圓的切線垂直于經(jīng)過切點的半徑 124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 125推論2 經(jīng)過切點且垂直于切線的直線
47、必經(jīng)過圓心 126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等于它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積
48、相等 134如果兩個圓相切,那么切點一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內切 d=R-r(Rr) 兩圓內含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n3): 依次連結各分點所得的多邊形是這個圓的內接正n邊形 經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 139正n邊形的每個內角都等于(n-2)180n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141正
49、n邊形的面積Sn=pnrn2 p表示正n邊形的周長 142正三角形面積3a4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360,因此k(n-2)180n=360化為(n-2)(k-2)=4 144弧長計算公式:L=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內公切線長= d-(R-r) 外公切線長= d-(R+r) (還有一些,大家?guī)脱a充吧) 實用工具:常用數(shù)學公式 公式分類 公式表達式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式
50、|a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式 b2-4ac=0 注:方程有兩個相等的實根 b2-4ac0 注:方程有兩個不等的實根 b2-4ac0 拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側面積 S=c*h 斜棱柱側面積 S=c*h 正棱錐側面積 S=1/2c*h 正棱臺側面積 S=1/2(c+c)h 圓臺側面積 S=1/2(c+c)l
51、=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h 長方形的周長=(長+寬)2 正方形的周長=邊長4 長方形的面積=長寬 正方形的面積=邊長邊長 三角形的面積=底高2 平行四邊形的面積=底高 梯形的面積=(上底+下底)高2 直徑=半徑2 半徑=直徑
52、2 圓的周長=圓周率直徑= 圓周率半徑2 圓的面積=圓周率半徑半徑 長方體的表面積= (長寬+長高寬高)2 長方體的體積 =長寬高 正方體的表面積=棱長棱長6 正方體的體積=棱長棱長棱長 圓柱的側面積=底面圓的周長高 圓柱的表面積=上下底面面積+側面積 圓柱的體積=底面積高 圓錐的體積=底面積高3 長方體(正方體、圓柱體) 的體積=底面積高 平面圖形 名稱 符號 周長C和面積S 正方形 a邊長 C4a Sa2 長方形 a和b邊長 C2(a+b) Sab 三角形 a,b,c三邊長 ha邊上的高 s周長的一半 A,B,C內角 其中s(a+b+c)/2 Sah/2 ab/2sinC s(s-a)(s
53、-b)(s-c)1/2 a2sinBsinC/(2sinA) 四邊形 d,D對角線長 對角線夾角 SdD/2sin 平行四邊形 a,b邊長 ha邊的高 兩邊夾角 Sah absin 菱形 a邊長 夾角 D長對角線長 d短對角線長 SDd/2 a2sin 梯形 a和b上、下底長 h高 m中位線長 S(a+b)h/2 mh 圓 r半徑 d直徑 Cd2r Sr2 d2/4 扇形 r扇形半徑 a圓心角度數(shù) C2r2r(a/360) Sr2(a/360) 弓形 l弧長 b弦長 h矢高 r半徑 圓心角的度數(shù) Sr2/2(/180-sin) r2arccos(r-h)/r - (r-h)(2rh-h2)1/
54、2 r2/360 - b/2r2-(b/2)21/2 r(l-b)/2 + bh/2 2bh/3 圓環(huán) R外圓半徑 r內圓半徑 D外圓直徑 d內圓直徑 S(R2-r2) (D2-d2)/4 橢圓 D長軸 d短軸 SDd/4 立方圖形 名稱 符號 面積S和體積V 正方體 a邊長 S6a2 Va3 長方體 a長 b寬 c高 S2(ab+ac+bc) Vabc 棱柱 S底面積 h高 VSh 棱錐 S底面積 h高 VSh/3 棱臺 S1和S2上、下底面積 h高 VhS1+S2+(S1S1)1/2/3 擬柱體 S1上底面積 S2下底面積 S0中截面積 h高 Vh(S1+S2+4S0)/6 圓柱 r底半徑 h高 C底面周長 S底底面積 S側側面積 S表表面積 C2r S底r2 S側Ch S表Ch+2S底 VS底h r2h 空心圓柱 R外圓半徑 r內圓半徑 h高 Vh(R2-r2) 直圓錐 r底半徑 h高 Vr2h/3 圓臺 r上底半徑 R下底半徑 h高 Vh(R2Rrr2)/3 球 r半徑 d直徑 V4/3r3d2/6 球缺 h球缺高 r球半徑 a球缺底半徑 Vh(3a2+h2)/6 h2(3r-h)/3 a2h(2r-h) 球臺 r1和r2球臺上、下底半徑 h高 Vh3(r12r22)+h2/6 圓環(huán)體 R環(huán)體半徑 D環(huán)體直徑 r環(huán)體截面半徑 d環(huán)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋼筋結構施工協(xié)議
- 2025年智能交通系統(tǒng)建設反擔保合同3篇
- 2024年量子計算機技術研發(fā)與許可合同
- 2024年研發(fā)團隊外包服務合同
- 專業(yè)化一體化服務合同范本(2024年版)版
- 2024校服生產(chǎn)與校園服裝租賃服務合同3篇
- 2024版混凝土框架結構施工協(xié)議條款版B版
- 專業(yè)化人力資源解決方案服務協(xié)議樣本版A版
- 2025不動產(chǎn)抵押權設立與登記服務擔保合同范本3篇
- 2024年茶園土地承包管理合同樣本
- 食材配送消防安全應急預案
- 《供應鏈管理》期末考試復習題庫(含答案)
- GA 2139-2024警用防暴臂盾
- 廣東深圳市龍崗區(qū)城市建設投資集團有限公司招聘筆試題庫2024
- 2024版青島市勞動合同
- 招標文件范本江蘇版
- 中小學十五五發(fā)展規(guī)劃(2025-2030)
- 2024年江蘇客運從業(yè)資格證繼續(xù)教育
- 人教版高中地理選擇性必修1第一章地球的運動單元檢測含答案
- 電廠員工三級安全培訓(完美版)課件
- 2024年中考復習-數(shù)學(廣州專用)(解析版)
評論
0/150
提交評論