版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1從集合中隨機(jī)選取一個數(shù)記為,從集合中隨機(jī)選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為( )ABCD2設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于(
2、 )ABCD03設(shè)等差數(shù)列的前項和為,若,則( )A10B9C8D74已知符號函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)f(x)f(ax)(a1),則( )Asgng(x)sgn xBsgng(x)sgnxCsgng(x)sgnf(x)Dsgng(x)sgnf(x)5已知函數(shù),則的值等于( )A2018B1009C1010D20206在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn)那么完成這個工作所需要走的最短路徑長度是( )ABCD7已知,則的大小關(guān)系是( )ABCD8已知平面向量,滿足且,若對每一個確定的
3、向量,記的最小值為,則當(dāng)變化時,的最大值為( )ABCD19在展開式中的常數(shù)項為A1B2C3D710是正四面體的面內(nèi)一動點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則( )ABCD11已知函數(shù),下列結(jié)論不正確的是( )A的圖像關(guān)于點(diǎn)中心對稱B既是奇函數(shù),又是周期函數(shù)C的圖像關(guān)于直線對稱D的最大值是12某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失
4、,現(xiàn)將地區(qū)200家實體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計如圖所示,估算月經(jīng)濟(jì)損失的平均數(shù)為,中位數(shù)為n,則_.143張獎券分別標(biāo)有特等獎、一等獎和二等獎甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是_15在中,已知,則的最小值是_16滿足約束條件的目標(biāo)函數(shù)的最小值是 . 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知是等腰直角三角形,分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐()求證:平面平面()當(dāng)三棱錐的體積取最大值時,求平面與平面所成角的正弦值18(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數(shù),求實數(shù)k的取值范圍.
5、19(12分)已知函數(shù).(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍20(12分)已知函數(shù)f(x)|x1|x2|.若不等式|ab|ab|a|f(x)(a0,a、bR)恒成立,求實數(shù)x的取值范圍21(12分)某市調(diào)硏機(jī)構(gòu)對該市工薪階層對“樓市限購令”態(tài)度進(jìn)行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,的值,并完成頻率分布直方圖(2)若從收入(單位:百元)在的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,選中的2人中
6、恰有人贊成“樓市限購令”,求的分布列與數(shù)學(xué)期望(3)從月收入頻率分布表的6組市民中分別隨機(jī)抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結(jié)果22(10分)已知等差數(shù)列an的各項均為正數(shù),Sn為等差數(shù)列an的前n項和,.(1)求數(shù)列an的通項an;(2)設(shè)bnan3n,求數(shù)列bn的前n項和Tn.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳
7、解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.2B【解析】根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.3B【解析】根據(jù)題意,解得,得到答案.【詳解】,解得,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計算能力.4A【解析】根據(jù)符號函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)f(x)f(ax),而f(x)是R上的減函數(shù),當(dāng)x0時,xax,則有f(x)f(ax)
8、,則g(x)f(x)f(ax)0,此時sgng ( x)1,當(dāng)x0時,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)0,當(dāng)x0時,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)1,綜合有:sgng ( x)sgn(x);故選:A【點(diǎn)睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.5C【解析】首先,根據(jù)二倍角公式和輔助角公式化簡函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可【詳解】解: ,的周期為, ,故選:C【點(diǎn)睛】本題重點(diǎn)考
9、查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關(guān)鍵,屬于中檔題6C【解析】將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊易求得,由,知,由余弦定理知其中,故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.7B【解析】利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.8B【解析】根據(jù)
10、題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時,有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時,有最大值設(shè)切線的方程為,化簡可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡可得 即 所以切線方程為或所以當(dāng)變化時, 到直線的最大值為 即的
11、最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用, 圓的軌跡方程問題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.9D【解析】求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點(diǎn)睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。10B【解析】設(shè)正四面體的棱長為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值【
12、詳解】由題意設(shè)四面體的棱長為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,取的三等分點(diǎn)、如圖,則,所以、,由題意設(shè),和都是等邊三角形,為的中點(diǎn),平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,可得,此時,則,.故選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題11D【解析】通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結(jié)果【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D: ,令,則,則時,或時,即在上單調(diào)遞增,在和上單調(diào)遞
13、減;且,故D錯誤故選:【點(diǎn)睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題12A【解析】由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,( c為半焦距; a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13360【解析】先計算第一塊小矩形的面積,第二塊小矩形的面積,面積和超過0.5,所以中位數(shù)在第二塊求解,然
14、后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點(diǎn)睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.14【解析】利用排列組合公式進(jìn)行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標(biāo)有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有: 種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是: 故答案為:【點(diǎn)睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.15【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余
15、弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.16-2【解析】可行域是如圖的菱形ABCD,代入計算,知為最小.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 ()見解析. () .【解析】(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結(jié)論;(II)當(dāng)平面時,棱錐體積最大,建立空間坐標(biāo)系,計算兩平面的法向量,計算法向量的夾角得出答案【詳解】(I)證明:
16、 分別為的中點(diǎn) ,又平面平面,又平面平面平面(II),為定值當(dāng)平面時,三棱錐的體積取最大值以為原點(diǎn),以為坐標(biāo)軸建立空間直角坐標(biāo)系則,設(shè)平面的法向量為,則即,令可得平面 是平面的一個法向量平面與平面所成角的正弦值為【點(diǎn)睛】本題考查了面面垂直的判定,二面角的計算,關(guān)鍵是能夠根據(jù)體積的最值確定垂直關(guān)系,從而可以建立起空間直角坐標(biāo)系,利用空間向量法求得二面角,屬于中檔題18(1)(2)【解析】(1)由不等式可得,討論與的關(guān)系,即可得到結(jié)果;(2)先解得不等式,由集合M中有且僅有一個整數(shù),當(dāng)時,則M中僅有的整數(shù)為;當(dāng)時,則M中僅有的整數(shù)為,進(jìn)而求解即可.【詳解】解:(1)因為,所以,當(dāng),即時,; 當(dāng),即
17、時,;當(dāng),即時,. (2)由得,當(dāng),即時,M中僅有的整數(shù)為,所以,即; 當(dāng),即時,M中僅有的整數(shù)為,所以,即; 綜上,滿足題意的k的范圍為【點(diǎn)睛】本題考查解一元二次不等式,考查由交集的結(jié)果求參數(shù)范圍,考查分類討論思想與運(yùn)算能力.19(1);(2)【解析】(1),對函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因為,所以,當(dāng)時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;當(dāng)時,令,解得,即在上單調(diào)遞減,則,故不符合題意;當(dāng)時,在上恒成立,即在上
18、單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20 x【解析】由題知,|x1|x2|恒成立,故|x1|x2|不大于的最小值|ab|ab|abab|2|a|,當(dāng)且僅當(dāng)(ab)(ab)0時取等號,的最小值等于2.x的范圍即為不等式|x1|x2|2的解,解不等式得x.21(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大【解析】(1)由頻率和為可知,根據(jù)求得,從而計算得到頻數(shù),補(bǔ)全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即收入在的有名,則頻率分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Procainamide-hydrochloride-Standard-生命科學(xué)試劑-MCE
- 2024年學(xué)校禮堂表演場地租賃
- 應(yīng)急預(yù)案管理制度
- 加強(qiáng)班主任與學(xué)生關(guān)系的策略計劃
- 礦壓觀測、分析、預(yù)報制度
- 2024年婚禮主持服務(wù)協(xié)議
- 2024年市場推廣合作
- 2024年寵物貓健康檢查合同
- 2024年工程造價咨詢框架合同
- 2024年太陽能發(fā)電項目開發(fā)與合作建設(shè)合同
- 充電樁采購安裝售后服務(wù)方案
- 老年肺炎病人護(hù)理課件
- 鄉(xiāng)鎮(zhèn)醫(yī)院網(wǎng)絡(luò)安全應(yīng)急預(yù)案
- 運(yùn)維知識庫管理制度(模板)
- 2023年新華社招聘122人筆試參考題庫(共500題)答案詳解版
- 2023游戲行業(yè)人才報告
- 流行病學(xué)的誤差和偏倚
- 2023年中級經(jīng)濟(jì)師考試真題及答案完整版
- 第2.3課測量肺活量(教學(xué)課件)四年級科學(xué)上冊(教科版)
- Unit4ExploringpoetryExtendedReading公開課課件高中英語牛津譯林版(2020)選擇性
- 天線技術(shù)在智能電網(wǎng)通信系統(tǒng)中的關(guān)鍵技術(shù)研究-第2篇
評論
0/150
提交評論