版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1數(shù)列滿足:,則數(shù)列前項(xiàng)的和為ABCD2雙曲線y2=1的漸近線方程是( )Ax2y=0B2xy=0C4xy=0Dx4y=03我國宋代數(shù)學(xué)家秦九韶(1202-1261)在數(shù)書九章(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜
2、冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積. 其實(shí)質(zhì)是根據(jù)三角形的三邊長,求三角形面積,即. 若的面積,則等于( )ABC或D或4已知函數(shù),若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )ABCD5已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為( )ABCD6正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則( )AB1CD27已知滿足,則的取值范圍為( )ABCD8若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為( )AB2CD19執(zhí)行如圖所示的程序框圖,若輸入,則輸出的( )A4B5C6D710已知不同直線、與不同平面、,且,則下列說法中
3、正確的是( )A若,則B若,則C若,則D若,則11設(shè)是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,則( )ABCD12已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在中,點(diǎn)在邊上,且,設(shè),則_(用,表示)14若,i為虛數(shù)單位,則正實(shí)數(shù)的值為_.15現(xiàn)有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有_種.(用數(shù)字作答)16在的展開式中,項(xiàng)的系數(shù)是_(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其
4、中某選手選擇正確的概率為p,選擇錯(cuò)誤的概率為q,若選擇正確則加1分,選擇錯(cuò)誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時(shí),求且的概率.18(12分)如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角CAD60(1)求BC的長度;(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的視角分別為APB,DPC,問點(diǎn)P在何處時(shí),+最???19(12分)如圖,在四棱錐中,底面為正方形,、分別為、的中點(diǎn)(1)求證:平面;(2)求直線與平面所成角的
5、正弦值20(12分) 選修4-5:不等式選講:已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)設(shè),且的最小值為.若,求的最小值.21(12分)已知,分別為內(nèi)角,的對(duì)邊,且.(1)證明:;(2)若的面積,求角.22(10分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】分析:通過對(duì)anan+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可詳解:,又=5,即,數(shù)列前項(xiàng)的和為,故選A
6、點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1);(2) ; (3);(4) ;此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.2A【解析】試題分析:漸近線方程是y2=1,整理后就得到雙曲線的漸近線解:雙曲線其漸近線方程是y2=1整理得x2y=1故選A點(diǎn)評(píng):本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程屬于基礎(chǔ)題3C【解析】將,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,代入,得,即 ,解得,當(dāng)時(shí),由余弦弦定理得
7、: ,.當(dāng)時(shí),由余弦弦定理得: , .故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.4B【解析】利用換元法設(shè),則等價(jià)為有且只有一個(gè)實(shí)數(shù)根,分 三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè) ,則有且只有一個(gè)實(shí)數(shù)根.當(dāng) 時(shí),當(dāng) 時(shí), ,由即,解得,結(jié)合圖象可知,此時(shí)當(dāng)時(shí),得 ,則 是唯一解,滿足題意;當(dāng)時(shí),此時(shí)當(dāng)時(shí),此時(shí)函數(shù)有無數(shù)個(gè)零點(diǎn),不符合題意;當(dāng) 時(shí),當(dāng) 時(shí),此時(shí) 最小值為 ,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,此時(shí) .綜上所述: 或.故選:A.【點(diǎn)睛】本題考查了函數(shù)方程根的個(gè)數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題
8、的關(guān)鍵.5A【解析】根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,即:,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.6B【解析】根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根又是正項(xiàng)等比數(shù)列,所以.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.7C【解析】設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解
9、:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點(diǎn)的直線平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過點(diǎn)時(shí),取正值中的最小值,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵對(duì)于直線斜率要注意斜率不存在的直線是否存在8C【解析】根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及
10、簡單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.9C【解析】根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.10C【解析】根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.
11、11C【解析】根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域?yàn)榈呐己瘮?shù),且在單調(diào)遞增,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)的運(yùn)算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.12B【解析】試題分析:由題意得,所以,所求雙曲線方程為考點(diǎn):雙曲線方程.二、填空題:本題共4小題,每小題5分,共20分。13【解析】結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果【詳解】在中,因?yàn)?,所以,又因?yàn)椋怨蚀鸢笧椋骸军c(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化14【解析】利用復(fù)數(shù)模的運(yùn)算性質(zhì),即可得答案【詳解】由已知可得:,解得故答案為:【點(diǎn)睛】本題考查復(fù)
12、數(shù)模的運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于基礎(chǔ)題1536【解析】先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計(jì)算甲不排在兩端的排法,最后相減即可得到結(jié)果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點(diǎn)睛】排列、組合問題由于其思想方法獨(dú)特,計(jì)算量龐大,對(duì)結(jié)果的檢驗(yàn)困難,所以在解決這類問題時(shí)就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時(shí)解答組合問題時(shí)必須心思細(xì)膩、考慮周全,這樣才
13、能做到不重不漏,正確解題.16 【解析】的展開式的通項(xiàng)為:.令,得.答案為:-40.點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第r1項(xiàng),再由特定項(xiàng)的特點(diǎn)求出r值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第r1項(xiàng),由特定項(xiàng)得出r值,最后求出其參數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析,0(2)【解析】(1)即該選手答完3道題后總得分,可能出現(xiàn)的情況為3道題都答對(duì),答對(duì)2道答錯(cuò)1道,答對(duì)1道答錯(cuò)2道,3道題都答錯(cuò),進(jìn)而求解即可;(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的
14、題數(shù)是3題,又,則第一題答對(duì),第二題第三題至少有一道答對(duì),進(jìn)而求解.【詳解】解:(1)的取值可能為,1,3,又因?yàn)?故,所以的分布列為:13所以(2)當(dāng)時(shí),即答完8題后,正確的題數(shù)為5題,錯(cuò)誤的題數(shù)是3題,又已知,第一題答對(duì),若第二題回答正確,則其余6題可任意答對(duì)3題;若第二題回答錯(cuò)誤,第三題回答正確,則后5題可任意答對(duì)題, 此時(shí)的概率為(或).【點(diǎn)睛】本題考查二項(xiàng)分布的分布列及期望,考查數(shù)據(jù)處理能力,考查分類討論思想.18(1);(2)當(dāng)BP為cm時(shí),+取得最小值【解析】(1)作AECD,垂足為E,則CE10,DE10,設(shè)BCx,根據(jù)得到,解得答案.(2)設(shè)BPt,則,故,設(shè),求導(dǎo)得到函數(shù)單
15、調(diào)性,得到最值.【詳解】(1)作AECD,垂足為E,則CE10,DE10,設(shè)BCx,則,化簡得,解之得,或(舍),(2)設(shè)BPt,則,設(shè),令f(t)0,因?yàn)?,得,?dāng)時(shí),f(t)0,f(t)是減函數(shù);當(dāng)時(shí),f(t)0,f(t)是增函數(shù),所以,當(dāng)時(shí),f(t)取得最小值,即tan(+)取得最小值,因?yàn)楹愠闪?,所以f(t)0,所以tan(+)0,因?yàn)閥tanx在上是增函數(shù),所以當(dāng)時(shí),+取得最小值【點(diǎn)睛】本題考查了三角恒等變換,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.19(1)見解析;(2).【解析】(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、所
16、在直線分別為、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因?yàn)?、分別為、的中點(diǎn),所以又因?yàn)槠矫?,平面,所以平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,設(shè),則,設(shè)平面的法向量為,則,即,令,則,所以設(shè)直線與平面所成角為,所以因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法計(jì)算直線與平面所成的角,考查推理能力與計(jì)算能力,屬于中等題.20(1) (2)【解析】(1)當(dāng)時(shí),原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值【詳
17、解】(1)當(dāng)時(shí),原不等式可化為,當(dāng)時(shí),不等式可化為,解得,此時(shí);當(dāng)時(shí),不等式可化為,解得,此時(shí);當(dāng)時(shí),不等式可化為,解得,此時(shí),綜上,原不等式的解集為.(2)由題意得, ,因?yàn)榈淖钚≈禐?,所以,由,得,所?,當(dāng)且僅當(dāng),即,時(shí),的最小值為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式問題,對(duì)于含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向21(1)見解析;(2)【解析】(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,.(2)由(1)及正弦定理得,即,.,.【點(diǎn)睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 統(tǒng)考版2025屆高考物理二輪復(fù)習(xí)30分鐘許提分練8+2實(shí)驗(yàn)一含解析
- 公司資質(zhì)租賃合同范例
- 代理資質(zhì)檢合同范例
- 布偶貓合同范例
- 勞動(dòng)合同范例 文件
- 勞務(wù)yuanquan合同范例
- 建設(shè)游客中心合同范例
- 安裝維修售后合同范例
- 獸醫(yī)聘用合同范例
- 農(nóng)村大豆銷售合同范例
- 民警執(zhí)法執(zhí)勤規(guī)范化
- 心理放松訓(xùn)練
- 客戶需求及層次
- 海綿城市完整
- 力敏傳感器教學(xué)課件
- 強(qiáng)奸罪起訴狀
- 2024年廣東佛山市三水區(qū)淼城建設(shè)投資有限公司招聘筆試參考題庫附帶答案詳解
- 《排球運(yùn)動(dòng)》PPT課件(部級(jí)優(yōu)課)
- 高速公路綠化設(shè)計(jì)案例課件
- 《高速公路收費(fèi)員培訓(xùn)》專業(yè)知識(shí)點(diǎn)課件
- 工作匯報(bào)流程圖
評(píng)論
0/150
提交評(píng)論