




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1雙曲線的漸近線方程是( )ABCD2已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為( )ABCD3要得到函數(shù)的圖像,只需把函數(shù)的圖像( )A向左平移個單位B向左平移個單位C向右平移個單位D向右平
2、移個單位4已知向量,是單位向量,若,則( )ABCD5已知拋物線的焦點(diǎn)與雙曲線的一個焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長為,那么該雙曲線的離心率為( )ABCD6將4名大學(xué)生分配到3個鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是( )A18種B36種C54種D72種7復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為( )ABCD8已知定義在上的函數(shù),則,的大小關(guān)系為( )ABCD9已知滿足,則( )ABCD10已知空間兩不同直線、,兩不同平面,下列命題正確的是( )A若且,則B若且,則C若且,則D若不垂直于,且,則不垂直于11如圖,四邊形為正方形,延長至,使得,點(diǎn)在線段上運(yùn)動.設(shè),則的取值范
3、圍是( )ABCD12設(shè),其中a,b是實(shí)數(shù),則( )A1B2CD二、填空題:本題共4小題,每小題5分,共20分。13某同學(xué)周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為_.14已知,且,則最小值為_15函數(shù)的定義域?yàn)開.16在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個交點(diǎn),線段的中點(diǎn)為()證明:直線的斜率與的斜率的乘積為定值;()若過點(diǎn),延長線段與交于點(diǎn),四邊形能否為平
4、行四邊形?若能,求此時的斜率,若不能,說明理由18(12分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計(jì)頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,分組,用分層抽樣的方法從名學(xué)生中抽取20人.求每層應(yīng)抽取的人數(shù);若從,中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層
5、的概率.19(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時,求的面積;(2)設(shè)直線與橢圓的另一個交點(diǎn)為,當(dāng)為中點(diǎn)時,求的值.20(12分)已知多面體中,、均垂直于平面,是的中點(diǎn)(1)求證:平面;(2)求直線與平面所成角的正弦值21(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺數(shù)(萬臺)2345671011該產(chǎn)品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計(jì)算結(jié)
6、果:,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中, ,.22(10分)已知a0,證明:1參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程
7、的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用2A【解析】根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題3A【解析】運(yùn)用輔助角公式將兩個函數(shù)公式進(jìn)行變形得以及,按四個選項(xiàng)分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點(diǎn)睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點(diǎn)有兩個,一個是混淆
8、了已知函數(shù)和目標(biāo)函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).4C【解析】設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),是單位向量,,,聯(lián)立方程解得:或當(dāng)時,;當(dāng)時,;綜上所述:.故選:C.【點(diǎn)睛】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時注意的兩種情況.5A【解析】由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過雙曲線的左焦點(diǎn),拋物線的準(zhǔn)線被雙曲線截得的線段長為,又,則雙曲線的離心率為故選:【點(diǎn)睛】本題考查
9、拋物線的性質(zhì)及利用過雙曲線的焦點(diǎn)的弦長求離心率. 弦過焦點(diǎn)時,可結(jié)合焦半徑公式求解弦長6B【解析】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.7C【解析】,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.8D【解析】先判斷函數(shù)在時的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在
10、時的單調(diào)性,比較出三個數(shù)的大小.【詳解】當(dāng)時,函數(shù)在時,是增函數(shù).因?yàn)椋院瘮?shù)是奇函數(shù),所以有,因?yàn)?,函?shù)在時,是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.9A【解析】利用兩角和與差的余弦公式展開計(jì)算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.10C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線
11、,故不正確應(yīng)選答案C11C【解析】以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長為1,則,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.12D【解析】根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計(jì)算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】采用列舉法計(jì)算古典概型的概率.【詳解】拋擲
12、一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型的概率計(jì)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.14【解析】首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【詳解】,結(jié)合可知原式,且,當(dāng)且僅當(dāng)時等號成立.即最小值為.【點(diǎn)睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正各項(xiàng)均為正;二定積或和為定值;三相等等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤15【解析】對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對
13、函數(shù)有意義,即.故答案為:【點(diǎn)睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.16【解析】解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時,到直線的距離;當(dāng)時,到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查
14、曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()詳見解析;()能,或【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由 ()得的方程為設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)
15、設(shè)直線,由得,直線的斜率,即即直線的斜率與的斜率的乘積為定值(2)四邊形能為平行四邊形直線過點(diǎn),不過原點(diǎn)且與有兩個交點(diǎn)的充要條件是,由 ()得的方程為設(shè)點(diǎn)的橫坐標(biāo)為由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即解得,當(dāng)?shù)男甭蕿榛驎r,四邊形為平行四邊形考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點(diǎn)弦,當(dāng)直線與圓錐曲線相交時,點(diǎn)是弦的中點(diǎn),(1)知道中點(diǎn)坐標(biāo),求直線的斜率,或知道直線斜率求中點(diǎn)坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時,也可以選擇點(diǎn)差法,設(shè),,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,即得到結(jié)果,(2)對于用坐
16、標(biāo)法來解決幾何性質(zhì)問題,那么就要求首先看出幾何關(guān)系滿足什么條件,其次用坐標(biāo)表示這些幾何關(guān)系,本題的關(guān)鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯(lián)立求兩個坐標(biāo),最后求斜率.18(1),中位數(shù);(2)三層中抽取的人數(shù)分別為2,5,13;【解析】(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,再結(jié)合中位數(shù)的計(jì)算方法,即可求解.(2)由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);由知,設(shè)內(nèi)被抽取的學(xué)生分別為,內(nèi)被抽取的學(xué)生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計(jì)算公式,即可求解.【詳解】(1)由題意,可得,所以,.設(shè)一周課外讀書時間的中
17、位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因?yàn)?,的頻數(shù)分別為20,50,130,所以從,三層中抽取的人數(shù)分別為2,5,13.由知,在,兩層中共抽取7人,設(shè)內(nèi)被抽取的學(xué)生分別為,內(nèi)被抽取的學(xué)生分別為,若從這7人中隨機(jī)抽取2人,則所有情況為,共有21種,其中2人不在同一層的情況為,共有10種.設(shè)事件為“這2人不在同一層”,由古典概型的概率計(jì)算公式,可得概率為.【點(diǎn)睛】本題主要考查了頻率分布直方表的性質(zhì),中位數(shù)的求解,以及古典概型的概率計(jì)算等知識的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.19(1);(2)
18、或【解析】(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),若,則直線的方程為,由,得,解得,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)?,所以又點(diǎn),都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運(yùn)算求解能力,屬于中檔題.20(1)見解析;(2)【解析】(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 原礦代加工合同范本
- 原料預(yù)定采購合同范例
- 單位暖氣維修合同范本
- 加工生產(chǎn)合同范本
- 單位轉(zhuǎn)讓社保合同范本
- 稻田農(nóng)務(wù)種植合同范本
- 做涂料包工合同范本
- 臨時講師聘用合同范本
- 醫(yī)療打包采購合同范本
- 修建工程合同范本
- 2024年中國煤科煤炭科學(xué)技術(shù)研究院有限公司招聘筆試參考題庫含答案解析
- 情緒管理團(tuán)體輔導(dǎo)專項(xiàng)方案
- 一年級美術(shù)課后輔導(dǎo)方案-1
- 新法律援助基礎(chǔ)知識講座
- 《鍛造安全生產(chǎn)》課件
- 小學(xué)數(shù)學(xué)1-6年級(含奧數(shù))找規(guī)律專項(xiàng)及練習(xí)題附詳細(xì)答案
- 《同濟(jì)大學(xué)簡介》課件
- 機(jī)電安裝工程質(zhì)量控制
- 愛自己是終身浪漫的開始 心理課件
- 新房房屋買賣合同
- 地鐵出入口雨棚施工工藝
評論
0/150
提交評論