2022年河南省洛陽市高三下學期第六次檢測數(shù)學試卷含解析_第1頁
2022年河南省洛陽市高三下學期第六次檢測數(shù)學試卷含解析_第2頁
2022年河南省洛陽市高三下學期第六次檢測數(shù)學試卷含解析_第3頁
2022年河南省洛陽市高三下學期第六次檢測數(shù)學試卷含解析_第4頁
2022年河南省洛陽市高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為( )ABCD2已知中,則( )A1BCD3已知雙曲線的左焦點為,直線經(jīng)過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,若,則該雙曲線的離心率為( )ABCD4已知甲、乙

2、兩人獨立出行,各租用共享單車一次(假定費用只可能為、元)甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為( )ABCD5函數(shù)的單調(diào)遞增區(qū)間是( )ABCD6以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是( )(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B4月份僅有三個城市居民消費價格指數(shù)超過102C四個月的數(shù)據(jù)顯示北京市的居民消

3、費價格指數(shù)增長幅度波動較小D僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢7若P是的充分不必要條件,則p是q的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件8已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是( )ABCD9若復數(shù)是純虛數(shù),則實數(shù)的值為( )A或BCD或10已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是( )ABCD11將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有( )A14種B15種C16種D18種12已知函數(shù)在上單調(diào)遞增,則的

4、取值范圍( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為_.14已知復數(shù),其中是虛數(shù)單位若的實部與虛部相等,則實數(shù)的值為_15設,則“”是“”的_條件.16已知函數(shù),若方程的解為,(),則_;_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.18(12分)已知,均為正項數(shù)列,其前項和分別為,且,當,時,.(1)求數(shù)列,的通項公式;(2)設,求數(shù)列的前項和.19(1

5、2分)ABC的內(nèi)角的對邊分別為,已知ABC的面積為(1)求;(2)若求ABC的周長.20(12分)已知在中,角,的對邊分別為,的面積為.(1)求證:;(2)若,求的值.21(12分)設首項為1的正項數(shù)列an的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù)(1)求p的值;(2)求證:數(shù)列an為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x1,且y2”22(10分)已知分別是的內(nèi)角的對邊,且()求()若,求的面積()在()的條件下,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項

6、是符合題目要求的。1A【解析】根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,即:,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.2C【解析】以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.3A【解析】直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關(guān)系進行求解即可.【詳解】由題意可知直線的方

7、程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關(guān)系和已知條件即可求解,屬于一般性題目.4B【解析】甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得【詳解】由題意甲、乙租車費用為3元的概率分別是,甲、乙兩人所扣租車費用相同的概率為故選:B【點睛】本題考查獨立性事件的概率掌握獨立事件的概率乘法公式是解題基礎5D【解析】利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為

8、,所以當時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應用,使問題化繁為簡,難度較易.6D【解析】采用逐一驗證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.7B【解析】試題分析:通過逆否命題的

9、同真同假,結(jié)合充要條件的判斷方法判定即可由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B考點:邏輯命題8B【解析】構(gòu)造函數(shù)(),求導可得在上單調(diào)遞增,則 ,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),通過導數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調(diào)性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生

10、分析問題的能力和邏輯推理能力,難度較難.9C【解析】試題分析:因為復數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)10D【解析】由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當時,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當時,所以是函數(shù)的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.11D【解析】采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同

11、顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有27=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題12B【解析】由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B

12、.【點睛】本題考查了三角函數(shù)的單調(diào)性的應用,考查了學生的邏輯推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用即可建立關(guān)于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,由已知,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程或不等式,是一道容易題.14【解析】直接由復數(shù)代數(shù)形式的乘法運算化簡,結(jié)合已知條件即可求出實數(shù)的值.【詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【點睛】本題考查復數(shù)的乘法運算和復數(shù)的概念,屬于基礎題.15充分必要【解析】根據(jù)充分條件和必要條件的定

13、義可判斷兩者之間的條件關(guān)系.【詳解】當時,有,故“”是“”的充分條件.當時,有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點睛】本題考查充分必要條件的判斷,可利用定義來判斷,也可以根據(jù)兩個條件構(gòu)成命題及逆命題的真假來判斷,還可以利用兩個條件對應的集合的包含關(guān)系來判斷,本題屬于容易題.16 【解析】求出在 上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得 因為,所以 關(guān)于 對稱.則.由,則由可知,又因為 ,所以,則,即故答案為: ;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯點在于沒有正

14、確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令 進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)3+3【解析】(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0A,可求A的值(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長【詳解】(1) ,即 又 (2) , ,由余弦定理得 a2b2+c22bccosA, , c0,所以得c=2, 周長a+b+c=3+3【點睛】本題考查三角函數(shù)恒等變換的應用,正弦定理,余弦定理在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于中檔題18(1),(2)【解析】(1),所,兩式相減,即可得到數(shù)

15、列遞推關(guān)系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,即可求得數(shù)列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當時,解得,所以數(shù)列是首項和公比均為的等比數(shù)列,即,因為,整理得,又因為,所以,所以,即,因為,所以數(shù)列是以首項和公差均為1的等差數(shù)列,所以;(2)由(1)可知,即.【點睛】此題考查求數(shù)列的通項公式,以及數(shù)列求和,關(guān)鍵在于對題中所給關(guān)系合理變形,發(fā)現(xiàn)其中的關(guān)系,裂項求和作為一類常用的求和方法,需要在平常的學習中多做積累常見的裂項方式.19 (1)(2) .【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由

16、和計算出,從而求出角,根據(jù)題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從

17、而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.20(1)證明見解析;(2).【解析】(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當時,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,.又,.解:(2)由(1)求解知,.當時,.又,.【點睛】本題考查正弦與余弦定理的應用,屬于基礎題21(1)p2;(2)見解析(3)見解析【解析】(1)取n1時,由得p0或2,計算排除p0的情況得到答案.(2),則,相減得到3an+14Sn+1Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設an,2xan+1,2yan+2成等差數(shù)列,其中

18、x、y均為整數(shù),計算化簡得2x2y21,設kx(y2),計算得到k1,得到答案.【詳解】(1)n1時,由得p0或2,若p0時,當n2時,解得a20或,而an0,所以p0不符合題意,故p2;(2)當p2時,則,并化簡得3an+14Sn+1Sn,則3an+24Sn+2Sn+1,得(nN*),又因為,所以數(shù)列an是等比數(shù)列,且;(3)充分性:若x1,y2,由知an,2xan+1,2yan+2依次為,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x2y21,顯然xy2,設kx(y2),因為x、y均為整數(shù),所以當k2時,2x2y21或2x2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論