版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍是( )ABCD2已知、分別是雙曲線的左、右焦點,過作雙
2、曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為( )ABCD3已知集合,集合,則( )ABCD4設(shè)等差數(shù)列的前項和為,若,則( )A21B22C11D125已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在( ).A第一象限B第二象限C第三象限D(zhuǎn)第四象限6已知向量,則向量在向量上的投影是( )ABCD7如圖所示,三國時代數(shù)學家趙爽在周髀算經(jīng)中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)
3、大約為( )A134B67C182D1088下列不等式成立的是( )ABCD9已知復數(shù)(為虛數(shù)單位,),則在復平面內(nèi)對應的點所在的象限為( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限10復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點在( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11以,為直徑的圓的方程是ABCD12已知,則下列不等式正確的是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的定義域是_(寫成區(qū)間的形式)14若函數(shù)為奇函數(shù),則_.15函數(shù)在處的切線方程是_.16過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線
4、交于點M,若,則l的斜率為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在三角形中,角,的對邊分別為,若.()求角;()若,求.18(12分)如圖,在正四棱錐中,為上的四等分點,即(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值19(12分)設(shè)函數(shù)(1)當時,解不等式;(2)若的解集為,求證:20(12分)如圖,設(shè)點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當時,(1)求橢圓的方程.(2)當時,求的面積.21(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊
5、形的面積為1(1)求橢圓的方程;(2)設(shè)直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由22(10分)在平面直角坐標系中,已知向量,其中.(1)求的值;(2)若,且,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】利用換元法設(shè),則等價為有且只有一個實數(shù)根,分 三種情況進行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè) ,則有且只有一個實數(shù)根.當 時,當 時, ,由即,解得,結(jié)合圖象可知,此時當時,得 ,則 是唯一解,滿足題意;當時,此時當時,此時函數(shù)有無數(shù)個零點,不符合題意;當 時
6、,當 時,此時 最小值為 ,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個實數(shù)根,此時 .綜上所述: 或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.2B【解析】設(shè)點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設(shè)點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關(guān)鍵就是得出、的等量關(guān)系,考查計算能力,屬于中等題.3C【解析】求出集合的等價條件,利用交集的定義進行求解即可.
7、【詳解】解:,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎(chǔ)題.4A【解析】由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以 ,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.5D【解析】設(shè),由,得,利用復數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)
8、的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.6A【解析】先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.7B【解析】根據(jù)幾何概型的概率公式求出對應面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,則小正方形的邊長為,小正方形的面積,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關(guān)鍵
9、.8D【解析】根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個選項的正誤.【詳解】對于,錯誤;對于,在上單調(diào)遞減,錯誤;對于,錯誤;對于,在上單調(diào)遞增,正確.故選:.【點睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.9B【解析】分別比較復數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復平面內(nèi)對應的點所在的象限.【詳解】因為時,所以,所以復數(shù)在復平面內(nèi)對應的點位于第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查學生的計算求解能力,屬于基礎(chǔ)題.10B【解析】利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,
10、則復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎(chǔ)題.11A【解析】設(shè)圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標準方程,建立方程組,屬于基礎(chǔ)題.12D【解析】利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項【詳解】已知,賦值法討論的情況:(1)當時,令,則,排除B、C選項;(2)當時,令,則,
11、排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題二、填空題:本題共4小題,每小題5分,共20分。13【解析】要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是14-2【解析】由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應用,考查學生的計算求解能力,屬于基礎(chǔ)題.15【解析】求出和的值,利用點斜式可得出所求切線的方
12、程.【詳解】,則,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.16【解析】分別過A,B,N作拋物線的準線的垂線,垂足分別為,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,由拋物線的定義知,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17()(
13、)8【解析】()由余弦定理可得,即可求出A,()根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式和正弦定理即可求出.【詳解】()由余弦定理,所以,所以,即,因為,所以;()因為,所以,因為,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.18(1)答案見解析(2)【解析】(1)根據(jù)題意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以為原點建立直角坐標系,求出面的法向量為,的法向量為,利用空間向量的數(shù)量積即可求解.【詳解】(1)由由因為是正四棱錐,故于是,由余弦定理,在中,設(shè)再用余弦定理,在中,是直角,同理,而在平面上,平面平面(2)
14、以為原點建立直角坐標系,如圖:則設(shè)面的法向量為,的法向量為則,取于是,二面角的余弦值為:【點睛】本題考查了面面垂直的判定定理、空間向量法求二面角,屬于基礎(chǔ)題.19(1);(2)見解析.【解析】(1)當時,將所求不等式變形為,然后分、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結(jié)論.【詳解】(1)當時,不等式為,且.當時,由得,解得,此時;當時,由得,該不等式不成立,此時;當時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得, ,當且僅當,時取等號
15、,【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.20(1)(2)【解析】(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為, 又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為 .(2)由(1)得,橢圓的右準線方程為,離心率,則點到右準線的距離為,所以,即,把代入橢圓方程得,因為直線的斜率,所以, 因為直線經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以, 所以的面積.【點睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計算,意在考查學生對這些知識的掌握水平和分析推理計算能力.21(1)(2)是為定值,的橫坐標為定值【解析】(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點的橫坐標,結(jié)合根與系數(shù)關(guān)系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,因此橢圓方程為(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冀少版八年級生物上冊第四單元復習提升課件
- 人教版五年級下冊分數(shù)的計算練習題
- 電路初探單元復習教案
- 安全教案 三年級
- 《陋室銘》教學反思
- 太陽能電站改造簡易施工合同
- 蘇教版一年級語文下冊全冊教案
- 咨詢公司噪聲污染治理實施方案
- 煙草產(chǎn)品庫存調(diào)配方案
- 游戲開發(fā)項目協(xié)議
- 【廣東】濱水主題景觀項目及多功能城市設(shè)計
- 醫(yī)院優(yōu)質(zhì)護理服務(wù)評價細則
- 中國民歌介紹課件
- 《望天門山》-優(yōu)質(zhì)課件
- 高中數(shù)學必修一黃岡中學試卷(內(nèi)含答案)
- 學寫一種植物(三年級作文指導)課件
- 2022年全國高中數(shù)學聯(lián)賽福建賽區(qū)預賽試卷參考答案
- 加油站安全承諾書
- 豬的呼吸道疾病課件
- 衛(wèi)生院會議制度
- 氣溫和氣溫的分布 詳細版課件
評論
0/150
提交評論