版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1要得到函數(shù)的圖象,只需將函數(shù)的圖象A向左平移個(gè)單位長(zhǎng)度B向右平移個(gè)單位長(zhǎng)度C向左平移個(gè)單位長(zhǎng)度
2、D向右平移個(gè)單位長(zhǎng)度2點(diǎn)為的三條中線的交點(diǎn),且,則的值為( )ABCD3函數(shù)的圖像大致為( ).ABCD 4已知,是兩條不重合的直線,是一個(gè)平面,則下列命題中正確的是( )A若,則B若,則C若,則D若,則5已知實(shí)數(shù)x,y滿足,則的最小值等于( )ABCD6盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則( )A,B,C,D,7已知,若,則正數(shù)可以為( )A4B23C8D178若函數(shù)的圖象經(jīng)過(guò)點(diǎn),則函數(shù)圖象的一條對(duì)稱軸的方程可以為( )ABCD9在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為(
3、 )ABCD10若等差數(shù)列的前項(xiàng)和為,且,則的值為( )A21B63C13D8411已知集合,則( )ABCD12在中,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、的面積分別為、,記(),則取到最大值時(shí),的值為( )A1B1CD二、填空題:本題共4小題,每小題5分,共20分。13數(shù)學(xué)家狄里克雷對(duì)數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:的值域?yàn)?其中正確的結(jié)論是_(寫出所有正確的結(jié)論的序號(hào))14若函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像.則在區(qū)間上的最小值為_(kāi).15已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_16設(shè)函數(shù),若存在實(shí)數(shù)m,
4、使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是_.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)圖1是由矩形ADEB,RtABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,F(xiàn)BC=60,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC平面BCGE;(2)求圖2中的二面角BCGA的大小.18(12分)如圖,四棱錐中,四邊形是矩形,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.19(12分)已知,分別是三個(gè)內(nèi)
5、角,的對(duì)邊,(1)求;(2)若,求,20(12分)在中,角所對(duì)的邊分別為,若,且.(1)求角的值;(2)求的最大值.21(12分)已知函數(shù),若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.22(10分)如圖在直角中,為直角,分別為,的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,連接,為的中點(diǎn)()證明:面;()若,求二面角的余弦值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)椋灾恍鑼⒌膱D象向右平移個(gè)單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.2B
6、【解析】可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出【詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,.故選:B【點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.3A【解析】本題采用排除法: 由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無(wú)限接近于0時(shí), 排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得, 令函數(shù) ,則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無(wú)限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函
7、數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.4D【解析】利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或故選:D.【點(diǎn)睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.5D【解析】設(shè),去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),恒成立,故則的最小值等于.故選:【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平6C
8、【解析】根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,所以.表示取出兩個(gè)球,其中一黑一白,表示取出兩個(gè)球?yàn)楹谇?,表示取出兩個(gè)球?yàn)榘浊?,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.7C【解析】首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:,當(dāng)時(shí),滿足,實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8B【解析】由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱軸的求法,求得的對(duì)稱軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,
9、得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱軸的求法,屬于中檔題.9A【解析】由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問(wèn)題,一般求橢圓離心率的問(wèn)題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.10B【解析】由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,然后結(jié)合等差數(shù)列的求和公式即可求解【詳解】解:因?yàn)?,所以,解可得,則故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題11C【解析】求出集合,計(jì)算出和,
10、即可得出結(jié)論.【詳解】,.故選:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.12D【解析】根據(jù)三角形中位線的性質(zhì),可得到的距離等于的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭堑闹形痪€,所以到的距離等于的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了
11、基本不等式求最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)新定義,結(jié)合實(shí)數(shù)的性質(zhì)即可判斷,由定義求得比小的有理數(shù)個(gè)數(shù),即可確定.【詳解】對(duì)于,由定義可知,當(dāng)為有理數(shù)時(shí);當(dāng)為無(wú)理數(shù)時(shí),則值域?yàn)?,所以錯(cuò)誤;對(duì)于,因?yàn)橛欣頂?shù)的相反數(shù)還是有理數(shù),無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù),所以滿足,所以正確;對(duì)于,因?yàn)椋?dāng)為無(wú)理數(shù)時(shí),可以是有理數(shù),也可以是無(wú)理數(shù),所以錯(cuò)誤;對(duì)于,由定義可知,所以錯(cuò)誤;綜上可知,正確的為.故答案為:.【點(diǎn)睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問(wèn)題的關(guān)鍵,屬于中檔題.14【解析】注意平移是針對(duì)自變量x,所以,再利用整體換元法求值域(最
12、值)即可.【詳解】由已知,又,故,所以的最小值為.故答案為:.【點(diǎn)睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問(wèn)題,涉及到圖象的平移變換、輔助角公式的應(yīng)用,是一道基礎(chǔ)題.15【解析】,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.16【解析】先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出
13、來(lái),利用函數(shù)思想來(lái)判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,即,由圖可知,故,且,從而,令,顯然,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17 (1)見(jiàn)詳解;(2) .【解析】(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?,和菱形?nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)槭?/p>
14、平面垂線,所以易證.(2)在圖中找到對(duì)應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,又因?yàn)楹驼吃谝黄?,A,C,G,D四點(diǎn)共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過(guò)B作延長(zhǎng)線于H,連結(jié)AH,因?yàn)锳B平面BCGE,所以而又,故平面,所以.又因?yàn)樗允嵌娼堑钠矫娼?,而在中,又因?yàn)楣?,所?而在中,,即二面角的度數(shù)為.【點(diǎn)睛】很新穎的立體幾何考題首先是多面體粘合問(wèn)題,考查考生在粘合過(guò)程中哪些量是不變的再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法最后將求二面角轉(zhuǎn)化為求
15、二面角的平面角問(wèn)題考查考生的空間想象能力18(1)見(jiàn)解析;(2)【解析】(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1),分別為,的中點(diǎn),四邊形是矩形,平面,平面,平面.(2)取,的中點(diǎn),連接,則,由于為三棱柱,為四棱錐,平面平面,平面,由已知可求得,到平面的距離為,因?yàn)樗倪呅问蔷匦?,設(shè)幾何體的體積為,則,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.19(1
16、); (2),或,.【解析】(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得因?yàn)?,所以,代入上式并化?jiǎn)得由于,所以又,故(2)因?yàn)?,由余弦定理得?所以而,所以,為一元二次方程的兩根所以,或,【點(diǎn)睛】本題考查了正弦定理,余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20(1);(2).【解析】(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因?yàn)?,所?在中,由正弦定理得,所以,即.在中,由余弦定理得,又因?yàn)?,所?(2)由(1)得,在中,所以.因?yàn)?,所以,所以?dāng),即時(shí),有最大值1,所以的最大值為.【點(diǎn)睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標(biāo)運(yùn)算,是一道容易題.21【解析】試題分析:先將問(wèn)題“ 存在實(shí)數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實(shí)數(shù)使成立,等價(jià)于的最大值大于,因?yàn)?,由柯西不等式:,所以,?dāng)且僅當(dāng)時(shí)取“”,故常數(shù)的取值范圍是考點(diǎn):柯西不等式即運(yùn)用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運(yùn)用.22()詳見(jiàn)解析;().【解析】()取中點(diǎn),連結(jié)、,四邊
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年園林景觀工程施工監(jiān)理合同范本3篇
- 2024年度高端養(yǎng)生浴池租賃合作協(xié)議3篇
- 2024年標(biāo)準(zhǔn)協(xié)議免責(zé)條款模板版B版
- 2024年度文化旅游資源招商引資居間合同3篇
- 2024年度知識(shí)產(chǎn)權(quán)交易與評(píng)估合同范本3篇
- 2024年度校企合作人才培養(yǎng)與科研項(xiàng)目合作合同范本3篇
- 貴州省前期物業(yè)服務(wù)合同2025
- 定制代加工合同范例
- 火燒店加盟合同范例
- 網(wǎng)店運(yùn)營(yíng)兼職合同范例
- 2024年度院線電影導(dǎo)演聘請(qǐng)合同書3篇
- 《腦出血的診斷和治》課件
- 參加團(tuán)干部培訓(xùn)心得體會(huì)
- 中華民族共同體概論專家講座第一講中華民族共同體基礎(chǔ)理論
- 高中政治8.3.1 《區(qū)域性國(guó)際組織》(歐洲聯(lián)盟、亞太經(jīng)合組織)教學(xué)設(shè)計(jì)
- 通信網(wǎng)絡(luò)練習(xí)題庫(kù)+參考答案
- 專項(xiàng)11-角度計(jì)算的綜合大題-專題訓(xùn)練(培優(yōu)+拔尖)30道
- 2024青海海東市水務(wù)集團(tuán)限責(zé)任公司招聘27人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 國(guó)有企業(yè)考勤制度管理辦法
- 人教版六年級(jí)上冊(cè)道德與法治知識(shí)點(diǎn)
- 人工智能學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評(píng)論
0/150
提交評(píng)論