




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知雙曲線的左焦點為,直線經(jīng)過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,
2、若,則該雙曲線的離心率為( )ABCD2已知,表示兩個不同的平面,l為內(nèi)的一條直線,則“是“l(fā)”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件3已知,則的大小關(guān)系為( )ABCD4要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是( )ABCD5已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為( )(附:若隨機變量服從正態(tài)分布,則,)A4.56%B13.59%C27.18%D31.
3、74%6四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是( )A12B16C20D87已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( )ABCD8某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為( )A元B元C元D元9已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設(shè)點位于第一象限),過點,分別作拋物線的準(zhǔn)線的垂線,垂足分別為點,拋物線的準(zhǔn)線交軸于點,若,則直線的斜率為A1BCD10若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)( )ABC4D5
4、11在三棱錐中,且分別是棱,的中點,下面四個結(jié)論:;平面;三棱錐的體積的最大值為;與一定不垂直.其中所有正確命題的序號是( )ABCD12若兩個非零向量、滿足,且,則與夾角的余弦值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_.14(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數(shù)列,后三個和尚的身高依次成等比數(shù)列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是_ cm15已知向量,若向量與向量平行,則實數(shù)_
5、16某高校開展安全教育活動,安排6名老師到4個班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有_種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.18(12分)已知的三個內(nèi)角所對的邊分別為,向量,且.(1)求角的大?。唬?)若,求的值19(12分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.20(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),且滿足
6、.(1)求;(2)若,求的最大值.21(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修工廠規(guī)定當(dāng)日損壞的元件A在次日早上 8:30 之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作每個工人獨立維修A元件需要時間相同維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A個數(shù) 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日
7、 元件A個數(shù) 12 24 15 15 15 12 15 15 15 24 從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù)()求X的分布列與數(shù)學(xué)期望;()若a,b,且b-a=6,求最大值;()目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學(xué)期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)22(10分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.參考答案一、選擇題:本題共12小
8、題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.2A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷解:根據(jù)題意,由于,表示兩個不同的平面,l為內(nèi)的一條直線,由于“,則根據(jù)面面平行的性質(zhì)定理可知,則必然中任何
9、一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,“是“l(fā)”的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定3A【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數(shù),所以所以,故選:A.【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.4C【解析】根據(jù)題意,分兩種情況進(jìn)行討論:語文和數(shù)學(xué)都安排在上午;語文和數(shù)學(xué)一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:語文和數(shù)學(xué)都安排在上午,要
10、求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C【點睛】本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,屬于中等題5B【解析】試題分析:由題意故選B考點:正態(tài)分布6A【解析】先將除A,B以外的兩人先排,再將A,B在3個空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A
11、,B在3個空位置里進(jìn)行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.7C【解析】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得, 三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛
12、】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.8A【解析】根據(jù) 2018年的家庭總收人為元,且就醫(yī)費用占 得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占 所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應(yīng)用,還考查了建模解
13、模的能力,屬于基礎(chǔ)題.9C【解析】根據(jù)拋物線定義,可得,又,所以,所以,設(shè),則,則,所以,所以直線的斜率故選C10D【解析】根據(jù)復(fù)數(shù)的四則運算法則先求出復(fù)數(shù)z,再計算它的模長【詳解】解:復(fù)數(shù)za+bi,a、bR;2z,2(a+bi)(abi),即,解得a3,b4,z3+4i,|z|故選D【點睛】本題主要考查了復(fù)數(shù)的計算問題,要求熟練掌握復(fù)數(shù)的四則運算以及復(fù)數(shù)長度的計算公式,是基礎(chǔ)題11D【解析】通過證明平面,證得;通過證明,證得平面;求得三棱錐體積的最大值,由此判斷的正確性;利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,又,所以平面,所以,故正確;因為,所以平面,故正確;當(dāng)平面與平
14、面垂直時,最大,最大值為,故錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.12A【解析】設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。
15、13【解析】將已知由前n項和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關(guān)系求公比,屬于基礎(chǔ)題.14【解析】依題意設(shè)前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數(shù)列,則公比,故.15【解析】由題可得,因為向量與向量平行,所以,解得16156【解析】先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老
16、師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過 “正難則反”的思想進(jìn)行分析.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2)證明見詳解,【解析】(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項和公式,可得結(jié)果.【詳解】(1)由,則-可得:所以(2)由(1)可知:則-可得:則,且令,則,所以數(shù)列是首項為,公比為的等比數(shù)列所以【點睛】本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗
17、觀察能力以及分析能力,屬中檔題.18(1)(2)【解析】利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進(jìn)而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得, , 又因為,所以,解得或,. 在中,由余弦定理得,即 又因為,把代入整理得,解得,所以為等邊三角形, ,即.【點睛】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19(1)(2)證明見解析【解析】(1)求導(dǎo),可得(1),(1
18、),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證【詳解】(1)函數(shù)的定義域為,則(1),(1),故曲線在點,(1)處的切線方程為,又曲線在點,(1)處的切線方程為,;(2)證明:由(1)知,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時,單調(diào)遞增,當(dāng),時,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時,單調(diào)遞增,當(dāng),時,單調(diào)遞減,故函數(shù)存在唯一的極大值點,且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,【點睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題20(1)(2)【解
19、析】(1)利用正弦定理和余弦定理化簡,根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),由,根據(jù)正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設(shè),由(1)的結(jié)論知.在中,由,所以.在中,由,所以.所以,由,所以當(dāng),即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識.21()分布列見解析,;();()至少增加2人.【解析】()求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可()當(dāng)P(aXb)取到最大值時,求出a,b的可能值,然后求解P(aXb)的最大值即可()利用前兩問的結(jié)果,判斷至少增加2人【詳解】()X的取值為:9,12,15,18,2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 妊娠合并貧血護(hù)理
- 項目建造成本管理培訓(xùn)
- 腹脹診斷流程
- 小班雨水節(jié)氣主題活動方案
- 顏色有趣游戲課件
- 健康教育學(xué)會感恩
- 精神科護(hù)理匯報
- 構(gòu)成與設(shè)計核心要素
- 2025年水泥熟料及水泥項目提案報告
- 2025年教學(xué)專用儀器項目立項申請報告
- 9日益重要的國際組織(第3課時) 教學(xué)設(shè)計-六年級下冊道德與法治
- 浙江省慈溪市2024年小升初語文真題試卷及答案
- 2023年上海高中學(xué)業(yè)水平合格性考試歷史試卷真題(含答案詳解)
- 2024-2030年中國商品混凝土行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資發(fā)展前景研究報告
- CJJT259-2016 城鎮(zhèn)燃?xì)庾詣踊到y(tǒng)技術(shù)規(guī)范
- 病案首頁填寫及質(zhì)控要求
- 18 設(shè)計緊急避難路線圖(教案)人美版(北京)(2012)美術(shù)三年級下冊
- 園林綠化移樹合同
- 排球大單元計劃教學(xué)設(shè)計-高一上學(xué)期體育與健康人教版
- 玻璃粉燒工藝
- 云計算和邊緣計算在工業(yè)互聯(lián)網(wǎng)中的融合
評論
0/150
提交評論