四川省內(nèi)江鐵路2022年高三3月份第一次模擬考試數(shù)學試卷含解析_第1頁
四川省內(nèi)江鐵路2022年高三3月份第一次模擬考試數(shù)學試卷含解析_第2頁
四川省內(nèi)江鐵路2022年高三3月份第一次模擬考試數(shù)學試卷含解析_第3頁
四川省內(nèi)江鐵路2022年高三3月份第一次模擬考試數(shù)學試卷含解析_第4頁
四川省內(nèi)江鐵路2022年高三3月份第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1直線與圓的位置關系是( )A相交B相切C相離D相交或相切2過點的直線與曲線交于兩點,若,則直線的斜率為( )ABC或D或3在平面直角坐標系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為( )ABCD4如圖所示的

2、程序框圖輸出的是126,則應為( )ABCD5已知橢圓:的左,右焦點分別為,過的直線交橢圓于,兩點,若,且的三邊長,成等差數(shù)列,則的離心率為( )ABCD6下列選項中,說法正確的是( )A“”的否定是“”B若向量滿足 ,則與的夾角為鈍角C若,則D“”是“”的必要條件7以下三個命題:在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為( )A3B2C1D08在邊長為1的等邊三角形中,點E是中點,點F是中

3、點,則( )ABCD9已知某幾何體的三視圖如右圖所示,則該幾何體的體積為( )A3BCD10已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為( )ABCD11中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位用縱式表示,十位、千位、十萬位用橫式表示,則56846可用算籌表示為( )ABCD12函數(shù)的大致圖像為( )ABCD二、填空題:本題共4小題,每小

4、題5分,共20分。13已知內(nèi)角的對邊分別為外接圓的面積為,則的面積為_.14集合,則_.15在中,內(nèi)角所對的邊分別為,若 ,的面積為,則_ ,_16設第一象限內(nèi)的點(x,y)滿足約束條件,若目標函數(shù)zaxby(a0,b0)的最大值為40,則的最小值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,且,成等差數(shù)列()求數(shù)列的通項公式;()設,為數(shù)列的前項和,記,證明:18(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型

5、曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.19(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.20(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓已知曲線上的點M對應的參數(shù),射線與曲線交于點(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值2

6、1(12分)設函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實數(shù)a的取值范圍.22(10分)設函數(shù)(1)當時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論【詳解】解:由題意,圓的圓心為,半徑,圓心到直線的距離為,故選:D【點睛】本題主要考查直線與圓的位置關系,屬于基礎題2A【解析】利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上

7、半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.3B【解析】依據(jù)線性約束條件畫出可行域,目標函數(shù)恒過,再分別討論的正負進一步確定目標函數(shù)與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得

8、實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題4B【解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+2n的值,并輸出滿足循環(huán)的條件解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+2n的值,并輸出滿足循環(huán)的條件S=2+22+21=121,故中應填n1故選B點評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應高度重視程序填空也是重要的考試題型,這種題考試的重點有:分支的條件循環(huán)的條件變量的賦值變量的輸出其中

9、前兩點考試的概率更大此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤5C【解析】根據(jù)等差數(shù)列的性質(zhì)設出,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,成等差數(shù)列,設,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.6D【解析】對于A根據(jù)命題的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足

10、am2bm2,但是ab不一定成立;對于D根據(jù)元素與集合的關系即可做出判斷【詳解】選項A根據(jù)命題的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2bm2,但是ab不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡單題.7C【解析】根據(jù)抽樣方式的特征,可判斷;根據(jù)相關系數(shù)的性質(zhì),可判斷;根據(jù)獨立性檢驗的方法和步

11、驟,可判斷【詳解】根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故應是系統(tǒng)抽樣,即為假命題;兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故為真命題;對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故為假命題故選:【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題8C【解析】根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結(jié)果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基

12、礎題.9B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:直三棱柱的體積為,消去的三棱錐的體積為,幾何體的體積,故選B. 點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關幾何量的數(shù)據(jù)是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.10A【解析】根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功11B【解析】根據(jù)題意表示出各位上的數(shù)字所

13、對應的算籌即可得答案【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的故選:【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題12D【解析】通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當時,排除B和C;當時,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三

14、角形邊長,可得面積【詳解】設外接圓半徑為,則,由正弦定理,得,故答案為:【點睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵14【解析】分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.15 【解析】由已知及正弦定理,三角函數(shù)恒等變換的應用可得,從而求得,結(jié)合范圍,即可得到答案運用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正

15、弦定理、余弦定理和面積公式解三角形,題目較為基礎,只要按照題意運用公式即可求出答案16【解析】不等式表示的平面區(qū)域陰影部分,當直線ax+by=z(a0,b0)過直線xy+2=0與直線2xy6=0的交點(8,10)時,目標函數(shù)z=ax+by(a0,b0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(),;()見解析【解析】()由,且成等差數(shù)列,可求得q,從而可得本題答案;()化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】()因為數(shù)列是各項均為正數(shù)的等比數(shù)列,可設公比為

16、q,又成等差數(shù)列,所以,即,解得或(舍去),則,;()證明:,則,因為,所以即.【點睛】本題主要考查等差等比數(shù)列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.18(1)點M的極坐標為或(2)【解析】(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.19(1)答案不

17、唯一,具體見解析(2)證明見解析【解析】(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設,再構(gòu)造函數(shù),利用導數(shù)得單調(diào)性,進而得證.【詳解】(1)依題意,當時,當時,恒成立,此時在定義域上單調(diào)遞增;當時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則=,(也可代入后再求導)在上單調(diào)遞減,故對于時,總有.由此

18、得【點睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.20(1)(2)【解析】(1)先求解a,b,消去參數(shù),即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,代入曲線直角坐標方程,可得的關系,轉(zhuǎn)化,可得解.【詳解】(1)將及對應的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標方程為設圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為(2)由于,故可設,代入曲線直角坐標方程,可得,所以【點睛】本題考查了極坐標和直角坐標,參數(shù)方程和一般方程的互化以及極坐標的幾何意義的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.21(1)當時, 無極值;當時, 極小值為;(2).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論