版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯誤的是( )A各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C全年中各月最低氣溫平均值不高于
2、10C的月份有5個D從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢2已知定義在上的函數(shù)滿足,且當(dāng)時,.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為( )ABCD3將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有( )A14種B15種C16種D18種4在“一帶一路”知識測驗(yàn)后,甲、乙、丙三人對成績進(jìn)行預(yù)測甲:我的成績比乙高乙:丙的成績比我和甲的都高丙:我的成績比乙高成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序?yàn)锳甲、乙、丙B乙、甲、丙C
3、丙、乙、甲D甲、丙、乙5設(shè)不等式組,表示的平面區(qū)域?yàn)?,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為ABCD6若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是( )A的虛部為BC的共軛復(fù)數(shù)為D為純虛數(shù)7已知函數(shù),則方程的實(shí)數(shù)根的個數(shù)是( )ABCD8某幾何體的三視圖如圖所示,則該幾何體的體積是( )ABCD9若2m2n1,則( )ABmn1Cln(mn)0D10過拋物線C:y24x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MNl,則M到直線NF的距離為( )A BCD11已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心
4、率是( )ABC2D312雙曲線的漸近線方程為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13正三棱柱的底面邊長為2,側(cè)棱長為,為中點(diǎn),則三棱錐的體積為_14已知數(shù)列的前項(xiàng)和為,且滿足,則_15齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為_16已知橢圓與雙曲線有相同的焦點(diǎn)、,其中為左焦點(diǎn).點(diǎn)為兩曲線在第一象限的交點(diǎn),、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為_.三、解答題:共70分。解答應(yīng)寫出文字
5、說明、證明過程或演算步驟。17(12分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.18(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù))(1)求實(shí)數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實(shí)數(shù)的取值范圍19(12分)已知,動點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時直線的方程.20(12分)如圖,四棱錐中,四邊形是矩形
6、,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.21(12分)如圖,在三棱柱中,已知四邊形為矩形,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.22(10分)已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)折線圖依次判斷每個選項(xiàng)得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高
7、氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力.2C【解析】由已知先求出,即,進(jìn)一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時,則,所以,顯然當(dāng)時,故,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒
8、成立,設(shè),令,解得,令,解得,考慮到,故有當(dāng)時,單調(diào)遞增,當(dāng)時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.3D【解析】采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有27=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白
9、黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題4A【解析】利用逐一驗(yàn)證的方法進(jìn)行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A【點(diǎn)睛】本題將數(shù)學(xué)知識與時政結(jié)合,主要考查推理判斷能力題目有一定難度,注重了基礎(chǔ)知識、邏
10、輯推理能力的考查5A【解析】畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.6D【解析】將復(fù)數(shù)整理為的形式,分別判斷四個選項(xiàng)即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模長、實(shí)部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.7D【解析】畫出函數(shù) ,將方程看作交點(diǎn)個數(shù),運(yùn)用圖象判斷根
11、的個數(shù)【詳解】畫出函數(shù)令有兩解 ,則分別有3個,2個解,故方程的實(shí)數(shù)根的個數(shù)是3+2=5個故選:D【點(diǎn)睛】本題綜合考查了函數(shù)的圖象的運(yùn)用,分類思想的運(yùn)用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題8A【解析】觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【點(diǎn)睛】本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。9B【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m2n120,mn0,mn01,故B正確;而當(dāng)m,n時,檢驗(yàn)可得,A、C、D都不
12、正確,故選:B【點(diǎn)睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).10C【解析】聯(lián)立方程解得M(3,),根據(jù)MNl得|MN|MF|4,得到MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y(x1)由得x或x3.由M在x軸的上方得M(3,),由MNl得|MN|MF|314又NMF等于直線FM的傾斜角,即NMF60,因此MNF是邊長為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力
13、.11A【解析】由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率【詳解】由題意,一條漸近線方程為,即,即,故選:A【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ)12C【解析】根據(jù)雙曲線的標(biāo)準(zhǔn)方程,即可寫出漸近線方程.【詳解】 雙曲線,雙曲線的漸近線方程為,故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】試題分析:因?yàn)檎庵牡酌孢呴L為,側(cè)棱長為為中點(diǎn),所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為考點(diǎn):幾何體的體積的計算14【解析】對題目所給等式進(jìn)行賦值,由此求
14、得的表達(dá)式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,時,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,可得【點(diǎn)睛】本小題主要考查已知求,考查等比數(shù)列前項(xiàng)和公式,屬于中檔題.15.【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點(diǎn)睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù)(1)基本事件總數(shù)較少時,用列舉
15、法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.16【解析】設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到 ,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得 ,由雙曲線的定義得,所以,因?yàn)槭且詾榈走叺牡妊切?,所以,?,因?yàn)?,所?,因?yàn)?,所以,所以,即,而,因?yàn)?,所以在上遞增,所以.故答案為:【點(diǎn)睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)由公式可化極
16、坐標(biāo)方程為直角坐標(biāo)方程;(2)把點(diǎn)極坐標(biāo)化為直角坐標(biāo),直線的參數(shù)方程是過定點(diǎn)的標(biāo)準(zhǔn)形式,因此直接把參數(shù)方程代入曲線的方程,利用參數(shù)的幾何意義求解【詳解】解:(1),則,所以曲線的直角坐標(biāo)方程為,即(2)點(diǎn)的直角坐標(biāo)為,易知.設(shè)對應(yīng)參數(shù)分別為將與聯(lián)立得【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查直線參數(shù)方程,解題時可利用利用參數(shù)方程的幾何意義求直線上兩點(diǎn)間距離問題18(1);(2).【解析】試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點(diǎn)的橫坐標(biāo),代入兩個曲線的方程,解方程組,可求得;(2)設(shè)與交點(diǎn)的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導(dǎo)得 設(shè)直線
17、與曲線切于點(diǎn),則,解得,所以的值為1 (2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導(dǎo)得 當(dāng)時,恒成立 當(dāng)時,從而 在上恒成立,故在上單調(diào)遞減,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知唯一的,使;,從而, 由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立當(dāng)時,在上恒成立,即在上恒成立,記,則,當(dāng)變化時,變化情況列表如下:30極小值,故“在上恒成立”只需,即當(dāng)時,當(dāng)時,在上恒成立,綜合知,當(dāng)時,函數(shù)為增函數(shù)故實(shí)數(shù)的取值范圍是 考點(diǎn):函數(shù)導(dǎo)數(shù)與不等式.【方法點(diǎn)晴】函數(shù)導(dǎo)數(shù)問題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點(diǎn):一個是切點(diǎn),一個是斜率,切點(diǎn)即在原來函數(shù)圖象上,也在切線上
18、;斜率就是導(dǎo)數(shù)的值.根據(jù)這兩點(diǎn),列方程組,就能解決.本題第二問我們采用分層推進(jìn)的策略,先求得的表達(dá)式,然后再求得的表達(dá)式,我們就可以利用導(dǎo)數(shù)這個工具來求的取值范圍了.19(1)(2)的最小值為1,此時直線:【解析】(1)用直接法求軌跡方程,即設(shè)動點(diǎn)為,把已知用坐標(biāo)表示并整理即得注意取值范圍;(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,設(shè),則可得,由求出,將直線方程與聯(lián)立,得,求得,計算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時可得直線的方程.【詳解】(1)設(shè),則,即整理得(2)設(shè):,將其與曲線的方程聯(lián)立,得即設(shè),則,將直線:與聯(lián)立,得設(shè).顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當(dāng)且僅
19、當(dāng),即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)【點(diǎn)睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值直線與橢圓相交問題中常采用“設(shè)而不求”的思想方法,即設(shè)交點(diǎn)坐標(biāo)為,設(shè)直線方程,直線方程與橢圓方程聯(lián)立并消元,然后用韋達(dá)定理得(或),把這個代入其他條件變形計算化簡得出結(jié)論,本題屬于難題,對學(xué)生的邏輯推理、運(yùn)算求解能力有一定的要求20(1)見解析;(2)【解析】(1)取中點(diǎn),中點(diǎn),連接,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,.由已知,平面,.,平面,平面,平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,設(shè)平面的法向量為,令得.設(shè)平面的法向量為,令得,二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21(1)見解析;(2)【解析】(1)過點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒童瑜伽教師聘用合同
- 生產(chǎn)部門保安聘用合同范例
- 蜜餞制作師崗位合同
- 金融服務(wù)合同執(zhí)行
- 城市排水泵站建設(shè)拖拉管施工合同
- 城市供電聯(lián)合施工合同
- 2025《家電采購合同》知識點(diǎn)
- 油氣管道鉆孔服務(wù)合同
- 商場促銷活動臨時工聘用合同
- 印刷行業(yè)應(yīng)收款項(xiàng)管理
- 集團(tuán)公司垂直管理辦法
- 小學(xué)外來人員出入校門登記表
- GB/T 25283-2023礦產(chǎn)資源綜合勘查評價規(guī)范
- 《滑炒技法-尖椒炒肉絲》教學(xué)設(shè)計
- 【人生哲學(xué)與傳統(tǒng)道德4200字(論文)】
- 116個公共信息圖形通用符號
- 勞動仲裁證據(jù)目錄清單
- DB11T 1832.11-2022建筑工程施工工藝規(guī)程 第11部分幕墻工程
- 怎樣移動重物幻燈片
- GB/T 29529-2013泵的噪聲測量與評價方法
- GB/T 29494-2013小型垂直軸風(fēng)力發(fā)電機(jī)組
評論
0/150
提交評論