天津市十二重點2021-2022學(xué)年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
天津市十二重點2021-2022學(xué)年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
天津市十二重點2021-2022學(xué)年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
天津市十二重點2021-2022學(xué)年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
天津市十二重點2021-2022學(xué)年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1定義在R上的函數(shù),若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是( )ABCD2已知是偶函數(shù),在上單調(diào)遞減,則的解集是ABCD3設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為( )ABCD4已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為( )ABCD5設(shè)遞增的等比數(shù)列的前n項和為,已知,則( )A9B27C81D6設(shè)等差數(shù)列的前n項和為,若,則( )ABC7D27已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為( )ABC2D48已知點在雙曲線上,則該雙曲線的離心率為( )

3、ABCD9已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是( )ABCD10已知集合,則集合真子集的個數(shù)為( )A3B4C7D811已知函數(shù)fx=sinx+6+cosx0在0,上的值域為32,3,則實數(shù)的取值范圍為( )A16,13B13,23C16,+D12,2312如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)為橢圓在第一象限上的點,則的最小值為_.14設(shè)函數(shù),則_.15已知等差數(shù)列的各項均為正數(shù),且,若,則_.16已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C

4、的離心率為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線,的交點分別為、(、異于原點),當(dāng)斜率時,求的最小值.18(12分)如圖,在四棱錐中,底面為直角梯形,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.19(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.20(12分)在四棱錐中,底面為直角梯形,面.(1)在線段上是否存在

5、點,使面,說明理由;(2)求二面角的余弦值.21(12分)己知函數(shù).(1)當(dāng)時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.22(10分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可【詳解】由條件可得函數(shù)關(guān)于直線對稱;在,上單調(diào)遞增,且在時使得;又,所以選項成立;,比離對稱軸遠(yuǎn),可得,選項成立;,可知比離對稱軸遠(yuǎn),選項成立;,符號不定,無法比較大小,不一定成

6、立故選:【點睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.2D【解析】先由是偶函數(shù),得到關(guān)于直線對稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時,由得,所以,解得;當(dāng)即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.3A【解析】由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時,在上有且僅有5個零點,.故選:A.【點睛】本題考查正弦型

7、函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.4B【解析】轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡,即得解【詳解】復(fù)數(shù)滿足:所以 故選:B【點睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.5A【解析】根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學(xué)生對這些知識的理解掌握水平.6B【解析】根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查

8、等差數(shù)列的性質(zhì)及前項和公式,屬于基礎(chǔ)題7A【解析】由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題8C【解析】將點A坐標(biāo)代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.9A【解析】構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù)

9、,所以當(dāng)時,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10C【解析】解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.11A【解析】將fx整理為3sinx+3,根據(jù)x的范圍可求得x+33,+3;根據(jù)f0=32,結(jié)合fx的值域和sinx的圖象,可知2+323,解不等式求得結(jié)果.【詳解】fx=sinx+6+cos

10、x=sinxcos6+cosxsin6+cosx=32sinx+32cosx=3sinx+3當(dāng)x0,時,x+33,+3又f0=3sin3=32,3sin23=32,3sin2=3由fx在0,上的值域為32,3 2+323解得:16,13本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.12C【解析】畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,PABC,正方體的棱長為2,該幾何體的表面積:故選C【點睛】本題考查三視圖求解幾何體的直觀圖

11、的表面積,判斷幾何體的形狀是解題的關(guān)鍵二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值【詳解】解:設(shè)點,其中,由,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時,函數(shù)取得最小值,且為,則的最小值為1故答案為:1【點睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運算能力,屬于難題14【解析】由自變量所在定義域范圍,代入對應(yīng)解析式,再由對數(shù)加

12、減法運算法則與對數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因為函數(shù),則因為,則故故答案為:【點睛】本題考查分段函數(shù)求值,屬于簡單題.15【解析】設(shè)等差數(shù)列的公差為,根據(jù),且,可得,解得,進(jìn)而得出結(jié)論.【詳解】設(shè)公差為,因為,所以,所以,所以 故答案為:【點睛】本題主要考查了等差數(shù)列的通項公式、需熟記公式,屬于基礎(chǔ)題.16【解析】由等腰三角形及雙曲線的對稱性可知或,進(jìn)而利用兩點間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點分別為,因為左、右焦點和點為某個等腰三角形的三個頂點,當(dāng)時,由可得,等式兩邊同除可得,解得(舍);當(dāng)時,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙

13、曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程.(2)【解析】(1)消去參數(shù),可得曲線的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解. (2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線的極坐標(biāo)方程為,分別代入曲線,的極坐標(biāo)方程,得, ,得出,即可基本不等式,即可求解.【詳解】(1) 由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標(biāo)方程為

14、,即,則曲線的極坐標(biāo)方程為,即,又因為曲線的極坐標(biāo)方程為,即,根據(jù),代入即可求解曲線的直角坐標(biāo)方程.(2)解法1:設(shè)直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,即,當(dāng)且僅當(dāng),即時取等號,故的最小值為.解法2:設(shè)直線的極坐標(biāo)方程為),代入曲線的極坐標(biāo)方程,得,把直線的參數(shù)方程代入曲線的極坐標(biāo)方程得:,即,曲線的參,即,當(dāng)且僅當(dāng),即時取等號,故的最小值為.【點睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標(biāo)方程與直角坐標(biāo)方程點互化,以及直線參數(shù)方程的應(yīng)用和極坐標(biāo)方程的應(yīng)用,其中解答中熟記互化公式

15、,合理應(yīng)用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18(1)見解析(2)【解析】(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,為,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1),點為的中點,又平面平面,平面平面,平面, 平面,又平面,又,分別為,的中點,又平面,平面,平面.(2)過點做平面的垂線,以為原點,分別以,為,軸建立空間直角坐標(biāo)系,設(shè)平面的法向量為,由,得,令,得,直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用

16、空間向量法求線面角,屬于中檔題.19(1)(2)【解析】(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,求出的范圍,注意.進(jìn)而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.20(1)存在;詳見解析(2)【解析】(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求

17、出長,寫出各點坐標(biāo),用向量法求二面角【詳解】解:(1)當(dāng)為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角21(1)證明見解析(2)證明見解析【解析】(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知; ,易知當(dāng)時,;當(dāng)時,函數(shù)單調(diào)遞增,而,又,由零點存在定理得,使得,使得,有從而得證.【詳解】(1)依題意,因為,且,故,故函數(shù)在上單調(diào)遞減,故.(2)依題意,令,則;而,可知當(dāng)時,故函數(shù)在上單調(diào)遞增,故當(dāng)時,;當(dāng)時,函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時,函數(shù)有極小值.【點睛】本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論