




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點對稱,則的值為( )A0B2C4D12i是虛數(shù)單位,若,則乘積的值是( )A15B3C3D153如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出
2、的是某四棱錐的三視圖,則該幾何體的體積為( )A2BC6D84如圖是一個算法流程圖,則輸出的結(jié)果是()ABCD5點在曲線上,過作軸垂線,設(shè)與曲線交于點,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為( )A0B1C2D36已知數(shù)列滿足:,則( )A16B25C28D337如圖,在中, ,是上的一點,若,則實數(shù)的值為( )ABCD8給出下列三個命題:“”的否定;在中,“”是“”的充要條件;將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象其中假命題的個數(shù)是( )A0B1C2D39甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.甲同學(xué)成績的中位數(shù)大于
3、乙同學(xué)成績的中位數(shù);甲同學(xué)的平均分比乙同學(xué)的平均分高;甲同學(xué)的平均分比乙同學(xué)的平均分低;甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是( )ABCD10已知當(dāng),時,則以下判斷正確的是 ABCD與的大小關(guān)系不確定11一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)( )A3.132B3.137C3.142D3.14712定義在R上的偶函數(shù)f(x)滿足f(x+2)f(x),當(dāng)x3,2時,f(x)x2,則( )ABf(sin3)f(cos3)CDf(2020)f(2019)二、填空題:本
4、題共4小題,每小題5分,共20分。13將函數(shù)的圖象向左平移個單位長度,得到一個偶函數(shù)圖象,則_14已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為_.15已知正四棱柱的底面邊長為,側(cè)面的對角線長是,則這個正四棱柱的體積是_16已知向量,且,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.18(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.1
5、9(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,且,求BD的長度.20(12分)設(shè)拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.21(12分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.22(10分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)函
6、數(shù)的圖象關(guān)于點對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因為函數(shù)的圖象關(guān)于點對稱,所以的圖象關(guān)于原點對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.2B【解析】,選B3A【解析】先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題
7、主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.4A【解析】執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題5C【解析】設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,
8、當(dāng)時,則單調(diào)遞減;當(dāng)時,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導(dǎo)函數(shù)處理零點問題,考查向量的坐標運算,考查零點存在性定理的應(yīng)用.6C【解析】依次遞推求出得解.【詳解】n=1時,n=2時,n=3時,n=4時,n=5時,.故選:C【點睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.7B【解析】變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【詳解】解:依題: ,又三點共線,解得故選:【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù). 思路是(1)先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向
9、量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值. (2)直線的向量式參數(shù)方程: 三點共線 (為平面內(nèi)任一點,)8C【解析】結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題,因為,所以“”是真命題,故其否定是假命題,即是假命題;對于命題,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,即,即可得到,即充分性成立;必要性:中,若,結(jié)合余弦函數(shù)的單調(diào)性可知,即,可得到,即必要性成立.故命題正確;對于命題,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題是假命題故假命題有.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的
10、應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.9A【解析】由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷,再根據(jù)數(shù)據(jù)集中程度判斷.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故錯誤;,則,故錯誤,正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).10C【解析】由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,時,根據(jù)條件得,即可得結(jié)果【詳解】解:設(shè),則,即為增函數(shù),又,即,所以,所以故選:C【點睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題11B【解
11、析】結(jié)合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎(chǔ)題12B【解析】根據(jù)函數(shù)的周期性以及x3,2的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項判斷即可.【詳解】由f(x+2)f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x3,2時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)f(cos3),即f(sin3)f(cos3),選項B正確;選項C,所以,即,選項C錯誤;選項D,選項D錯誤.故
12、選:B.【點睛】本題考查函數(shù)性質(zhì)的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)平移后關(guān)于軸對稱可知關(guān)于對稱,進而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個單位長度后得到偶函數(shù)圖象,即關(guān)于軸對稱關(guān)于對稱 即: 本題正確結(jié)果:【點睛】本題考查根據(jù)三角函數(shù)的對稱軸求解參數(shù)值的問題,關(guān)鍵是能夠通過平移后的對稱軸得到原函數(shù)的對稱軸,進而利用特殊值的方式來進行求解.142【解析】根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解
13、,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.16【解析】由向量平行的坐標表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)【解析】(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標原點,建立空間直角坐標系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結(jié).則,故面.又面,因此.(2)由(1)知即為二面角的平
14、面角,且.在中應(yīng)用余弦定理,得,于是有,即,從而有平面.以為坐標原點,建立如圖所示的空間直角坐標系,則,于是,設(shè)平面的法向量為,則,即,解得于是平面的一個法向量為.設(shè)直線與平面所成角為,因此.【點睛】本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.18(1);(2)【解析】(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,求出,當(dāng)時求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為. (2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時時,時,故存在使得且當(dāng)時,當(dāng)時,所以當(dāng)時,當(dāng)時,所以當(dāng)時,取得極小值,也
15、是最小值,故由于,所以,.【點睛】本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學(xué)計算能力,屬于中檔題.19(1)(2)【解析】(1)根據(jù)共線得到,利用正弦定理化簡得到答案.(2)根據(jù)余弦定理得到,再利用余弦定理計算得到答案.【詳解】(1)與共線,.即,即,.(2),在中,由余弦定理得:,.則或(舍去).,.在中,由余弦定理得:,.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.20(1)2,;(2)證明見解析.【解析】(1)由題意得的方程為,根據(jù)為拋物線過焦點的弦,以為直徑的圓與相切于點.利用拋物線和圓的對稱性,可得,圓心為
16、,半徑為2.(2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設(shè),的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,故.【點睛】本題主要考查拋物線的定義幾何性質(zhì)以及直線與拋物線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.21(1);(2)或【解析】(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點坐標為,結(jié)合導(dǎo)數(shù)的幾何意義可得
17、方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結(jié)合零點定義化簡并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調(diào)性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,設(shè)切點為,故,故,則;令,故當(dāng)時,當(dāng)時,故當(dāng)時,函數(shù)有最小值,由于,故有唯一實數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當(dāng)變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,故當(dāng)或時,直線與曲線在上有兩個交點,即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.【點睛】本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點的意義及綜合應(yīng)用,屬于難題.22(1)或;(2)見解析【解析】(1)根據(jù),利用零點分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省成都電子信息學(xué)校高考班、單招班2024-2025學(xué)年高一上學(xué)期期中考試語文試卷(圖片版 無答案)
- 《分子熱運動》熱和能課件
- 貼片機培訓(xùn)教材
- 2025年度三月份特許經(jīng)營加盟商廣告投放費用分擔(dān)協(xié)議修訂版
- DB11 T 384.10-2009 圖像信息管理系統(tǒng)技術(shù)規(guī)范 第10部分 圖像采集點設(shè)置要求
- 營改增金融行業(yè)政策解讀
- 貴州新中式高端別墅大區(qū)景觀概念設(shè)計項目
- 電網(wǎng)安規(guī)安全培訓(xùn)課件
- 2025三月份影視拍攝場地特殊時段租賃補充協(xié)議
- 李寧體育園宣傳策劃案
- 企業(yè)文化-電力與能源戰(zhàn)略參考題庫2025版
- 7.2做中華人文精神的弘揚者教學(xué)設(shè)計 -2024-2025學(xué)年統(tǒng)編版道德與法治七年級下冊
- 2025年杭州萬向職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及答案1套
- 2024年天津醫(yī)科大學(xué)眼科醫(yī)院自主招聘筆試真題
- 船舶錨泊與系泊系統(tǒng)
- 幼兒園獲獎公開課:大班語言《遇見春天》課件
- 煤礦招生考試試題及答案
- 2025年徐州市專業(yè)技術(shù)人員公需課程 - 知識產(chǎn)權(quán)
- 市政設(shè)施維護保養(yǎng)手冊
- 2025年河南省鄭州市單招職業(yè)適應(yīng)性測試題庫含答案
- 《Python與數(shù)據(jù)分析應(yīng)用》課件-第10章 數(shù)據(jù)分析工具Pandas
評論
0/150
提交評論