《第二章線性方程組n維向量》自測題(75分鐘)(1)_第1頁
《第二章線性方程組n維向量》自測題(75分鐘)(1)_第2頁
《第二章線性方程組n維向量》自測題(75分鐘)(1)_第3頁
《第二章線性方程組n維向量》自測題(75分鐘)(1)_第4頁
《第二章線性方程組n維向量》自測題(75分鐘)(1)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、PAGE PAGE 5 第二章 線性方程組 n維向量 自測題 (75分鐘)一、單項(xiàng)選擇題(16分,每小題4分)1.對于方程個數(shù)與未知量個數(shù)相同的非齊次線性方程組,下列結(jié)論正確的是 .A. 當(dāng)方程組有解時(shí),系數(shù)行列式D一定不等于0. B. 當(dāng)系數(shù)行列式D=0, 方程組一定無解.C. 當(dāng)系數(shù)行列式D=0, 方程組一定有解. D. 當(dāng)系數(shù)行列式D=0時(shí),方程組不可能有唯一解.2.設(shè)向量組是向量組的一個部分組,下列結(jié)論正確的是 .A. 若(1)相關(guān),則(2)必定相關(guān). B. 若(2)無關(guān),且其余向量也無關(guān),則(1)必定無關(guān).C. 若(2)無關(guān),則(1)必定無關(guān). D. 若(1)、(2)的秩相等,則.3

2、. 向量組線性無關(guān)的充分必要條件是 .A. 都不是零向量. B. 向量組中至少有一個向量不能由其他向量線性表示 C. 向量組中任何一個向量都不能由其他向量線性表示 D.任意兩個向量的對應(yīng)分量不成比例. E.向量的個數(shù)小于或等于向量的維數(shù).4.下列命題正確的是 .A.若向量線性相關(guān),線性相關(guān),則也線性相關(guān).B. 矩陣的m個行向量線性相關(guān),它的n個列向量不一定線性相關(guān).C.若線性相關(guān),線性無關(guān),則必線性相關(guān).D.若從矩陣A中劃去一列,得到矩陣B,則.二、計(jì)算題1.(8分)設(shè)向量組,試確定a為何值時(shí),向量組線性相關(guān).2. (8分)求矩陣的秩.3.(15分)設(shè),問當(dāng)為何值時(shí)(1)不能由線性表示?(2)

3、可由線性表示,且表示法唯一?(3)可由線性表示,且表示法不唯一?4. (15分)設(shè)(1)試證線性無關(guān);(2)將擴(kuò)大成一個極大無關(guān)組;(3)將其余向量表示為該極大無關(guān)組的線性組合.5. (18分)當(dāng)a,b為何值時(shí),線性方程組 無解;有唯一解;有無窮多解?并求出有無窮多解時(shí)的全部解(或通解).三、證明題1.(5分)設(shè)是互不相同的數(shù),證明,線性無關(guān).2.(15分)試證向量組 線性相關(guān).第二章 線性方程組 n維向量 自測題參考答案一、單項(xiàng)選擇題1.D 2.D 3.C 4.B二、計(jì)算題1. 當(dāng)或線性相關(guān).2. 當(dāng),矩陣A的秩為3,當(dāng),矩陣A的秩為4.3. (1)當(dāng),不能由線性表示;(2)當(dāng)且,可由線性表示,且表示法唯一;(3)當(dāng),可由線性表示,且表示法不唯一.4. 為一組基;.5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論