




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、雙曲線的標(biāo)準(zhǔn)方程寶應(yīng)中學(xué)高二數(shù)學(xué)組 高二(15)林根新2.3.1 雙曲線的標(biāo)準(zhǔn)方程復(fù)習(xí)引入1.平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a ( 2aF1F20)的點(diǎn)的軌跡是什么?橢圓與2.3.1 雙曲線的標(biāo)準(zhǔn)方程復(fù)習(xí)引入差等于常數(shù)的點(diǎn)的軌跡是什么呢?平面內(nèi)與兩定點(diǎn)F1、F2的距離的2.3.1 雙曲線的標(biāo)準(zhǔn)方程復(fù)習(xí)引入如圖(A), |MF1|-|MF2|=|F2F|=2aF1F2如圖(B), |MF2|-|MF1|=|F1F|=2aF1F2由可得: | |MF1|-|MF2| | = 2a F2 F1 (差的絕對值)上面 兩條合起來叫做雙曲線 兩個(gè)定點(diǎn)F1、F2雙曲線的焦點(diǎn); |F1F2|=2
2、c 焦距.(1)2a0 ;的絕對值(小于F1F2)注意定義:問題:設(shè)雙曲線的焦距為2c,雙曲線上任一點(diǎn)到焦點(diǎn)F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a(ca0),試探求雙曲線的方程。2.3.1 雙曲線的標(biāo)準(zhǔn)方程閱讀探究回顧:求橢圓標(biāo)準(zhǔn)方程的基本步驟?建系設(shè)點(diǎn)找限制條件化簡代入2.3.1 雙曲線的標(biāo)準(zhǔn)方程建 設(shè) 限(現(xiàn))代 化2.3.1 雙曲線的標(biāo)準(zhǔn)方程釋疑精講(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)曲線上任意一點(diǎn)的坐標(biāo)為P(x,y)(2)尋找動(dòng)點(diǎn)滿足的幾何條件(3)把幾何條件坐標(biāo)化并化簡F2F1P(x,y)xOy1.求雙曲線的標(biāo)準(zhǔn)方程的基本步驟2.3.1 雙曲線的標(biāo)準(zhǔn)方程釋疑精講2.3.1 雙曲線的標(biāo)準(zhǔn)方
3、程F2F1PxOyOPF2F1xy釋疑精講3.焦點(diǎn)在x軸和焦點(diǎn)在y軸的雙曲線的標(biāo)準(zhǔn)方程有何區(qū)別? 焦點(diǎn)在x軸上, x2項(xiàng)的系數(shù)為正; 焦點(diǎn)在y軸上, y2項(xiàng)的系數(shù)為正.釋疑精講2.3.1 雙曲線的標(biāo)準(zhǔn)方程歸納小結(jié)定義圖象方程焦點(diǎn)a.b.c 的關(guān)系| MF1-MF2 | =2a( 2a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2雙曲線與橢圓之間的區(qū)別與聯(lián)系|MF1MF2|=2a MF1+MF2=2a 橢 圓雙曲線(0,c)(0,c)歸納小結(jié)2.3.1 雙曲線的標(biāo)準(zhǔn)方程2.3.1 雙曲線的標(biāo)準(zhǔn)方程例題精講2.3.1 雙曲線的標(biāo)準(zhǔn)方程例題精講例2 寫出適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:經(jīng)過點(diǎn) 2.3.1 雙曲線的標(biāo)準(zhǔn)方程變式練習(xí)2.3.1 雙曲線的標(biāo)準(zhǔn)方程例題精講2.3.1 雙曲線的標(biāo)準(zhǔn)方程歸納小結(jié)定義圖象方程焦點(diǎn)a.b.c 的關(guān)系| MF1-MF2 | =2a( 2a0,b0,但a不一定大于b,c2=a2+b2ab0,a2=b2+c2雙曲線與橢圓之間的區(qū)別與聯(lián)系|M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州國際旅游服務(wù)合同樣本
- 商鋪?zhàn)赓U合同樣本:門面租賃全新范本
- 寒假臨時(shí)工雇傭合同書樣本
- 游戲品牌代言合同樣本
- 長租公寓租賃合同全文
- 新媒體廣告推廣合同模板
- 辦公室簡單裝修合同范本
- 個(gè)人貸款合同電子版模板
- 企業(yè)間的戰(zhàn)略合作框架合同范本
- 課件人物插圖小學(xué)生
- 2025年高考作文備考之二元思辨作文講解
- 語文學(xué)習(xí)任務(wù)群的解讀及設(shè)計(jì)要領(lǐng)
- 2024年山東省高考生物試卷真題(含答案解析)
- 光伏發(fā)電站項(xiàng)目安全技術(shù)交底資料
- 富血小板血漿(PRP)臨床實(shí)踐與病例分享課件
- 跨文化交際教程 課件 杜平 Unit 1 Cultural Awareness and Intercultural Communication-Unit 3 Nonverbal Communication
- 光伏工程施工組織設(shè)計(jì)
- 社保知識競賽考試題及答案
- 華為HCSA-Presales-IT售前認(rèn)證備考試題及答案
- 2024-2030年中國纖維板行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究報(bào)告
- 小學(xué)二年級上冊數(shù)學(xué)思維訓(xùn)練題100道及答案解析
評論
0/150
提交評論