



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、本節(jié)開始介紹第一個機(jī)器學(xué)習(xí)模型:線性回歸模型(Linear Regression Model)。線性回 歸的目的是預(yù)測連續(xù)變量的值,比如股票走勢,房屋的價格預(yù)測。從某種程度上說,線性 回歸模型,就是函數(shù)擬合。而線性回歸,針對線性模型擬合,是回歸模型當(dāng)中最簡單一種。形式化描述回歸模型:對于給定的訓(xùn)練樣本集包含N個訓(xùn)練樣本x(i)相應(yīng)的目標(biāo)值 t(i)(i=1,2,.N),我們的目的是給定一個新樣本x預(yù)測其值t,注意與分類問題不同是地 屬于連續(xù)變量。最簡單的線性回歸模型:。(犯 W)=祀口 +,+ WDXD其中,x=x1,x2,x3,.xD,D個特征項(xiàng),w=w1,w2,w3.wD,被稱為參數(shù)或者權(quán)
2、重。線性回 歸模型的關(guān)系是求出w。上面的公式可以簡化為:M-g(g W)=初口 + 2 嗎飽 I*)其中$(x)被成為集函數(shù),令0O(X)= 1,則上式又可以寫成:M-1(3)gw) = E 叱飽(x) = wT(x);:=n集函數(shù)的一般有多項(xiàng)式集函數(shù),比如Gaussian集函數(shù),Sigmoidal集函數(shù)。為方便出公 式推導(dǎo),我們假設(shè):最簡單的集函數(shù)形式:氣(x) = xj為了求出模型參數(shù)(一旦w求出,模型就被確定),我們首先需要定義出錯誤函數(shù) 或者(error function)或者又被成為損失函數(shù)(cost function),優(yōu)化損失函數(shù)的過程便是 模型求解的過程。我們定義線性回歸模型的
3、損失函數(shù):1 N2所()=!廣)一討必)(4)優(yōu)化當(dāng)前函數(shù)有很多方便,包括隨機(jī)梯度下降算法(gradient descent algorithm)算法步 驟如下:隨機(jī)起始參數(shù)W;按照梯度反方向更新參數(shù)W直到函數(shù)收斂。算法公式表示:wT+l =wx - rVEtt(5)其中,n表示學(xué)習(xí)速率(learning rate)。倒三角表示對損失函數(shù)求導(dǎo),得到導(dǎo)數(shù)方向。對公 式(4 )求導(dǎo)后:此=討+門 (舟)一(訝)舟)*)公式(5)更新方法又被稱為批梯度下降算法(batch gradient descent algorithm), 每更新一次W需要遍歷所有的訓(xùn)練樣本,當(dāng)樣本量很大是,將會是非常耗時的。另一種 更新方法,隨機(jī)梯度下降的算法,每次碰到一個樣本,即對W進(jìn)行更新:”+i =訝 +VW)*隨機(jī)梯度算法速度要遠(yuǎn)于批更新,但可能會得到局部最優(yōu)解。需要注意的是,在隨機(jī)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第六單元《梯形的面積》(教學(xué)設(shè)計)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 熱電廠項(xiàng)目概述
- 科技創(chuàng)新中心項(xiàng)目選址與區(qū)域分析
- 二零二五年度蔬菜種植保險與風(fēng)險管理合同
- 油漆涂料裝卸運(yùn)輸合同示范
- 早教中心裝修合同樣本
- 剎車材料項(xiàng)目風(fēng)險管理分析
- 11《一塊奶酪》教學(xué)設(shè)計-2024-2025學(xué)年統(tǒng)編版語文三年級上冊
- 2025年度企業(yè)安全防護(hù)解決方案開發(fā)票協(xié)議
- 2025年大型娛樂設(shè)施服務(wù)項(xiàng)目合作計劃書
- 《釉料制備及施釉》課件
- 《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》
- 主題巴納姆效應(yīng)
- 2024年江蘇航空職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 人教版一年數(shù)學(xué)下冊全冊分層作業(yè)設(shè)計
- 幼兒羽毛球培訓(xùn)課件
- 胰性腦病和wernicke腦病
- 人類學(xué)田野調(diào)查教學(xué)課件
- 大國工匠課件
- 遼寧省冷鏈物流行業(yè)報告
- 清潔氫能生產(chǎn)與輸儲技術(shù)創(chuàng)新
評論
0/150
提交評論