內(nèi)容參考講稿recurrent neural_第1頁(yè)
內(nèi)容參考講稿recurrent neural_第2頁(yè)
內(nèi)容參考講稿recurrent neural_第3頁(yè)
內(nèi)容參考講稿recurrent neural_第4頁(yè)
內(nèi)容參考講稿recurrent neural_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Machine Perception and Interaction Group (MPIG) .cn 跟我學(xué)CS231(7)袁洪慧MPIG Open Seminar 0220公眾號(hào):mpig_robotRecurrent Neural NetworkRNN的應(yīng)用RNN的分類(lèi)Recurrent Neural NetworkRNN的正向傳播Truncated Backpropagation LSTMOther RNN Variantssummary目錄RNN的應(yīng)用對(duì)于序列化的特征任務(wù),都適合用RNN來(lái)解決:情感分析關(guān)鍵字提取語(yǔ)音識(shí)別機(jī)器翻譯股票分析RNN的分類(lèi)“Vanilla” Neural N

2、etworkVanilla Neural NetworksRecurrent Neural Networks: Process Sequencese.g. Image Captioning image - sequence of wordse.g. Sentiment Classification sequence of words - sentimente.g. Machine Translation seq of words - seq of wordse.g. Video classification on frame levelRecurrent Neural Networkusual

3、ly want to predict a vector at some time stepsRecurrent Neural NetworkhRecurrent Neural NetworkWe can process a sequence of vectors x by applying a recurrence formula at every time step: new statesome function with parameters Wold state input vector atsome time stepRecurrent Neural NetworkWe can pro

4、cess a sequence of vectors x by applying a recurrence formula at every time step:Notice: the same function and the same set of parameters are used at every time step.(Simple) Recurrent Neural NetworkThe state consists of a single “hidden” vector h:RNN的展開(kāi)圖RNN的正向傳播RNN: Computational GraphRe-use the sa

5、me weight matrix at every time-step:RNN: Computational Graph: Many to Many RNN: Computational Graph: Many to OneRNN: Computational Graph: One to ManySequence to Sequence: Many-to-one + one-to-manyMany to one: Encode input sequence in a single vectorOne to many: Produce output sequence from single in

6、put vectorTruncated Backpropagation Backpropagation through time梯度截?cái)啵℅radient Clipping)為梯度設(shè)置閾值,超過(guò)該閾值的梯度值都會(huì)被cut,這樣更新的幅度就不會(huì)過(guò)大,因此容易收斂。具體做法:Truncated Backpropagation through timeTruncated Backpropagation through timeVanilla RNN Gradient FlowComputing gradient of h0 involves many factors of W (and repeat

7、ed tanh) Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994 Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013Largest singular value 1: Exploding gradients Largest singular value 1: Vanishing

8、 gradients Gradient clipping: Scale Computing gradient gradient if its norm is too bigSimple-RNN在實(shí)際應(yīng)用中并不多,原因:如果輸入越長(zhǎng)的話,展開(kāi)的網(wǎng)絡(luò)就越深,對(duì)于“深度”網(wǎng)絡(luò)訓(xùn)練的困難最常見(jiàn)的是 Gradient Explode 和 Gradient Vanish 的問(wèn)題。Simple-RNN基于先前的詞預(yù)測(cè)下一個(gè)詞,但在一些更加復(fù)雜的場(chǎng)景中,例如,“I grew up in France I speak fluent French” “France”則需要更長(zhǎng)時(shí)間的預(yù)測(cè),而隨著上下文之間的間隔不斷

9、增大時(shí),Simple-RNN會(huì)喪失學(xué)習(xí)到連接如此遠(yuǎn)的信息的能力。LSTM(Long Short-Term Memory)Long Short Term Memory (LSTM)RNN和LSTM框圖 LSTM的核心思想逐步理解 LSTM之遺忘門(mén)逐步理解 LSTM之輸入門(mén)LSTM還需要記住東西,所以有了圖示“記憶門(mén)”。逐步理解 LSTM逐步理解 LSTM之輸出門(mén)Other RNN VariantsGRU(Gated Recurrent Unit)GRU是和LSTM功能幾乎一樣的另一種網(wǎng)絡(luò)。最終的模型比標(biāo)準(zhǔn)的 LSTM 模型要簡(jiǎn)單,也是非常流行的變體SummaryRNNs allow a lot

10、of flexibility in architecture design Vanilla RNNs are simple but dont work very well Common to use LSTM or GRU: their additive interactions improve gradient flow Backward flow of gradients in RNN can explode or vanish. Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM) Better/simpler architectures are a hot

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論