流體流動特性_第1頁
流體流動特性_第2頁
流體流動特性_第3頁
流體流動特性_第4頁
流體流動特性_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、關(guān)于流體流動特性第一張,PPT共五十頁,創(chuàng)作于2022年6月1在t時刻,某質(zhì)點a,b,c 的位置可表示為:該流體質(zhì)點的速度場為:類似的方法可得到該流體質(zhì)點的加速度場3.1 流場及其描述方法第二張,PPT共五十頁,創(chuàng)作于2022年6月22. 歐拉法 又稱局部法,是以流體質(zhì)點流過空間某個點上時的運動特性,來研究整個流體的運動的。所以流體質(zhì)點的流動是空間點坐標(biāo)(x,y,z)和時間t的函數(shù),任一參量B可以表示為B=B (x,y,z,t)式中,x,y,z,t 稱為歐拉變量。是與流體質(zhì)點無關(guān)的空間坐標(biāo)值。x,y,z值不變, 改變t,表示空間某固定點的速度隨時間的變化規(guī)律。 t不變 ,改變x,y,z,代表某

2、一時刻,空間各點的速度分布。3.1 流場及其描述方法第三張,PPT共五十頁,創(chuàng)作于2022年6月33. 兩種方法的比較 3.1 流場及其描述方法拉格朗日法歐拉法表達(dá)式復(fù)雜表達(dá)式簡單不能直接反映參數(shù)的空間分布直接反映參數(shù)的空間分布不適合描述流體元的運動變形特性適合描述流體元的運動變形特性拉格朗日觀點是重要的流體力學(xué)最常用的解析方法分別描述有限質(zhì)點的軌跡同時描述所有質(zhì)點的瞬時參數(shù)第四張,PPT共五十頁,創(chuàng)作于2022年6月43.2 流體流動的速度場速度場任一瞬時由空間點上速度矢量構(gòu)成的場, 又稱速度分布。 1. 流體質(zhì)點運動的速度和加速度 在直角坐標(biāo)系中采用歐拉方法描述的速度函數(shù)為 對于具體的流體

3、質(zhì)點來說x,y,z有雙重意義:一方面它代表流場的空間坐標(biāo),另一方面它代表流體質(zhì)點在空間的位移。也就是說,空間坐標(biāo)x,y,z也是流體質(zhì)點位移的變量,它也是時間t的函數(shù)x= x (t) y= y (t) z= z (t)流體質(zhì)點的運動軌跡方程第五張,PPT共五十頁,創(chuàng)作于2022年6月5流體質(zhì)點在x 方向上的加速度分量為:上式對時間求導(dǎo)就可得流體質(zhì)點沿運動軌跡的三個速度分量所以同理3.2 流體流動的速度場第六張,PPT共五十頁,創(chuàng)作于2022年6月6表示成矢量形式,即歐拉方法中,流體質(zhì)點的加速度由兩項構(gòu)成當(dāng)?shù)丶铀俣?: 固定點上流體質(zhì)點的速度隨時間的變 化率,反映了流場的非定常性引起 (b) 遷移

4、加速度 : 流體質(zhì)點運動改變了空間位置而引起 的速度變化率,反映了流場的非均勻性 3-73.2 流體流動的速度場第七張,PPT共五十頁,創(chuàng)作于2022年6月73.2 流體流動的速度場遷移加速度當(dāng)?shù)丶铀俣鹊诎藦?,PPT共五十頁,創(chuàng)作于2022年6月8用歐拉法求流體質(zhì)點任意物理量的時間變化率:稱為隨體導(dǎo)數(shù)(質(zhì)點導(dǎo)數(shù))表示跟隨流體質(zhì)點的導(dǎo)數(shù)3-8當(dāng)?shù)貙?dǎo)數(shù),局部導(dǎo)數(shù)或時變導(dǎo)數(shù),表示流體質(zhì)點沒有空間 位移時,物理量對時間的變化率遷移導(dǎo)數(shù)或位變導(dǎo)數(shù),表示流體處于不同位置時物理量 對時間的變化率。注:1. 遷移導(dǎo)數(shù)雖然是參數(shù)在空間的分布,但并不是參數(shù)對坐標(biāo)的導(dǎo)數(shù),變量仍然是t, 通過中間變量x,y,z 對時

5、間求導(dǎo)。 2. 與拉格朗日坐標(biāo)系下質(zhì)點導(dǎo)數(shù)的比較3.2 流體流動的速度場第九張,PPT共五十頁,創(chuàng)作于2022年6月9【例】已知用歐拉法表示的流場速度分布規(guī)律為求:在t = 0時刻位于點(a, b)的流體質(zhì)點的運動軌跡?!窘狻坑闪黧w質(zhì)點的運動軌跡方程得 積分得:由t = 0時刻可得代回積分式,可得流體質(zhì)點軌跡方程為3.2 流體流動的速度場第十張,PPT共五十頁,創(chuàng)作于2022年6月10【例3-1】 已知用速度場u=2x,v=2y, w=0。求質(zhì)點的加速度及流場中(1,1)點的加速度。【解】在(1,1)點上,3.2 流體流動的速度場第十一張,PPT共五十頁,創(chuàng)作于2022年6月112.跡線和流線

6、跡線某一流體質(zhì)點在不同時刻所占有的空間位置連接成的空間曲線,或流體質(zhì)點的運動軌跡。與拉格朗日法相對應(yīng)其數(shù)學(xué)表達(dá)式為:3.2 流體流動的速度場第十二張,PPT共五十頁,創(chuàng)作于2022年6月12流線某一時刻,各點的切線方向與通過該點的流體質(zhì)點速度方向相同的曲線。其數(shù)學(xué)表達(dá)式為:3.2 流體流動的速度場第十三張,PPT共五十頁,創(chuàng)作于2022年6月133.2 流體流動的速度場第十四張,PPT共五十頁,創(chuàng)作于2022年6月143.2 流體流動的速度場流線的基本特性(1) 在定常流動時,因為流場中各流體質(zhì)點的速度不隨時間變化,所以通過同一點的流線形狀始終保持不變,因此流線和跡線相重合。而在非定常流動時,

7、一般說來流線要隨時間變化,故流線和跡線不相重合。 (2) 通過某一空間點在給定瞬間只能有一條流線,一般情況流線不能相交和分支。(駐點或奇點除外) (3) 流線不能突然折轉(zhuǎn),是一條光滑的連續(xù)曲線。 (4) 流線密集的地方,表示流場中該處的流速較大,稀疏的地方,表示該處的流速較小。第十五張,PPT共五十頁,創(chuàng)作于2022年6月153.2 流體流動的速度場【例3-2】 有一流場,其流速分布規(guī)律為:u= -ky,v= kx,w=0,試求流線方程?!窘狻?由于w=0,所以是二維流動,二維流動的流線方程微分為將兩個分速度代入流線微分方程積分上式得到即流線簇是以坐標(biāo)原點為圓心的同心圓第十六張,PPT共五十頁

8、,創(chuàng)作于2022年6月16【例】已知不定常流常速度場為 u = t+1 ,v = 1,t = 0時刻流體質(zhì)點A位于原點。 求: (1)質(zhì)點A的跡線方程; (2)t = 0時刻過原點的流線方程; (3)t = 1時刻質(zhì)點A的運動方向【解】(1)由跡線方程式,積分可得t = 0時質(zhì)點A 位于x =y =0,得c1= c2= 0。質(zhì)點A的跡線方程為 消去參數(shù) t 可得 (a) 3.2 流體流動的速度場第十七張,PPT共五十頁,創(chuàng)作于2022年6月17 上式表明質(zhì)點A的跡線是一條以(1/2,1)為頂點,且通過原點的拋物線(見圖)。 (2)由流線微分方程式,積分可得在 t = 0時刻,流線通過原點 x

9、= y = 0,可得C = 0,相應(yīng)的流線方程為 x = y這是過原點的一、三象限角平分線,與質(zhì)點A的跡線在原點相切(見圖)。 (b) (c) 3.2 流體流動的速度場第十八張,PPT共五十頁,創(chuàng)作于2022年6月18(3)為確定t = 1時刻質(zhì)點A的運動方向,需求此時刻過質(zhì)點A所在位置的 流線方程。由跡線方程可確定,t =1時刻質(zhì)點 A位于x =3/2,y =1位置, 代入流線方程 可得C = 1/4t = 1時刻過流體質(zhì)點A所在位置的流線方程為 x = 2 y1/2 上式是一條與流體質(zhì)點 A的跡線相切于(3/2,1)點的斜直線,運動方向為沿該直線朝 x, y值增大方向。 討論:以上可見,不

10、定常流動中跡線與流線不重合;不同時刻通過某固定點的流線可以不同(見b式),通過某流體質(zhì)點所在位置的流線也可以不同(見c和d式)。 (d) 3.2 流體流動的速度場第十九張,PPT共五十頁,創(chuàng)作于2022年6月193. 流管、流束和總流流管:在流場中任取一條不是流線的封閉曲線,通過曲線上各點作流線,這些流線組成一個管狀表面,稱之為流管。 流管表面上流體的速度與流管表面平行,即流管表面法向單位向量n 與該點的速度V相垂直。流管方程為:流體質(zhì)點不能穿過流管流入或流出。流束:過流管橫截面上各點作流線,則得到充滿流管的一束流線簇,稱為流束。有效截面:在流束中與各流線相垂直的橫截面稱為有效截面。也稱為過流

11、 斷面。3.2 流體流動的速度場第二十張,PPT共五十頁,創(chuàng)作于2022年6月203.2 流體流動的速度場第二十一張,PPT共五十頁,創(chuàng)作于2022年6月214. 流量和平均流速流量:單位時間內(nèi)通過有效截面的流體的量體積流量 :以Qv表示。單位為m3/s質(zhì)量流量 :以Qm表示。單位為kg/s對于在流管有效截面上流速不等的流動,其體積流量為當(dāng)流速與截面A不垂直時,體積流量變?yōu)槭街衝 是截面的外法線單位矢量3.2 流體流動的速度場第二十二張,PPT共五十頁,創(chuàng)作于2022年6月22平均流速:平均流速是一個假想的流速,即假定在有效截面上各點都以相同的流速流過,這時通過該有效截面上的體積流量與各點以真

12、實流速流動時所得到的體積流量相同。3.2 流體流動的速度場對于非圓截面管道引入濕周 、水力半徑和當(dāng)量直徑概念濕周 :在總流的有效截面上,流體與固體邊界接觸的長度水力半徑Rh :總流的有效截面面積與濕周之比當(dāng)量直徑Dh :4倍的水力半徑第二十三張,PPT共五十頁,創(chuàng)作于2022年6月23【例】已知:粘性流體在圓管(半徑R)內(nèi)作定常流動。設(shè)圓截面上速度分布 呈拋物線分布求:(1)流量Q的表達(dá)式;(2)截面上平均速度V 其中um截面速度分布的最大速度。 【解】流量計算時dA = 2rdr,拋物線分布的流量為 其平均速度為: 3.2 流體流動的速度場第二十四張,PPT共五十頁,創(chuàng)作于2022年6月24

13、3.2 流體流動的速度場【例3-3】直徑為d的圓形管道,邊長為a的正方形管道和高為h, 寬為3h 的矩形管道,具有相同的有效截面積A0=0.0314m2,分別求出這三種充滿流體的管道的濕周 、水力半徑Rh 和當(dāng)量直徑Dh,并說明那種管道最省材料(1)直徑為d 的圓管 d=0.20(m) =d=0.628(m) Rh =A0/=0.05(m) Dh=4Rh=0.2(m) =d(2)邊長為a 正方形 d=0.177(m) =4a=0.708(m) Rh =A0/=0.044(m) Dh=4Rh=0.177(m) 【解】(3)高為h的長方形 h=0.102(m) =0.816(m) Rh =A0/=

14、0.038(m) Dh=4Rh=0.153(m) 圓形截面濕周最小,過流截面積最大,最省料第二十五張,PPT共五十頁,創(chuàng)作于2022年6月253.3 流體微團(tuán)運動分析1. 亥姆霍茲速度分解定理 在 xy 平面流場中,M0 點的速度為在x方向上的速度為u0,則利用流體參數(shù)的連續(xù)性用泰勒展開可以得到鄰近 的M 點的速度在 x 方向的分量u可表示為旋轉(zhuǎn)速率線變形速率角變形速率 M0 平移速度 M 相對M0的速度第二十六張,PPT共五十頁,創(chuàng)作于2022年6月262. 流體微團(tuán)運動分析 (1)平移運動表現(xiàn)為流體微團(tuán)整體從ABC點運動平移運動到ABC點,微團(tuán)內(nèi)部任一流體質(zhì)點在x,y方向上的速度均為u,v

15、, 不存在速度梯度 。3.3 流體微團(tuán)運動分析xy第二十七張,PPT共五十頁,創(chuàng)作于2022年6月27(2)線變形運動流體微團(tuán)內(nèi)部沿x 方向運動,但是B 點和A點流體可能存在x 方向上的速度差,C點和A點可能存在y方向上的速度差,如圖。3.3 流體微團(tuán)運動分析xy第二十八張,PPT共五十頁,創(chuàng)作于2022年6月28線變形速率:單位時間、單位長度的伸長(縮短)率3.3 流體微團(tuán)運動分析同理y和z 方向上的線變形速率為面積擴(kuò)張率:面元的面積在平面內(nèi)的局部瞬時相對擴(kuò)張速率 體積膨脹率:體元的體積在空間的局部瞬時相對膨脹速率不可壓縮流體的速度散度面積擴(kuò)張率和體積膨脹率為零速度的散度第二十九張,PPT共

16、五十頁,創(chuàng)作于2022年6月29(3)旋轉(zhuǎn)運動 因為B點和A點可能存在y方向上的速度差,而C點和A點可能存在x方向上的速度差使微團(tuán)旋轉(zhuǎn)。如圖。3.3 流體微團(tuán)運動分析xy第三十張,PPT共五十頁,創(chuàng)作于2022年6月30旋轉(zhuǎn)角速度:兩正交線元在xy 面內(nèi)繞一點的旋轉(zhuǎn)角速度平均值 3.3 流體微團(tuán)運動分析規(guī)定逆時針方向旋轉(zhuǎn)為正,則 AB邊的旋轉(zhuǎn)角速度為AC邊的旋轉(zhuǎn)角速度為表現(xiàn)為流體微團(tuán)兩條正交邊的角平分線在xy 面內(nèi)繞一點的旋轉(zhuǎn)角速度 第三十一張,PPT共五十頁,創(chuàng)作于2022年6月31渦量寫成矢量為:速度的旋度流動無旋流動有旋3.3 流體微團(tuán)運動分析三維條件繞x軸和y軸的旋轉(zhuǎn)角速度為:第三十二

17、張,PPT共五十頁,創(chuàng)作于2022年6月32(4)角變形運動僅用旋轉(zhuǎn)運動并不能完全描述流體微團(tuán)的變形運動,如圖所示,若3.3 流體微團(tuán)運動分析則旋轉(zhuǎn)角速度為零,表現(xiàn)為流體微團(tuán)的角平分線不產(chǎn)生旋轉(zhuǎn),但是AB和AC間的夾角改變了。xy第三十三張,PPT共五十頁,創(chuàng)作于2022年6月33角變形速率:兩正交線元的與角平分線夾角在 xy 平面內(nèi)的局部瞬時變化速 率平均值同理:3.3 流體微團(tuán)運動分析AB和AC兩條正交直角邊在 xy 平面內(nèi)的局部瞬時變化速率為第三十四張,PPT共五十頁,創(chuàng)作于2022年6月34所以,對于流體微團(tuán)在三維空間的運動,速度可以寫為3.3 流體微團(tuán)運動分析第三十五張,PPT共五十

18、頁,創(chuàng)作于2022年6月353. 有旋流動的描述有旋流動:流場中存在存在著旋轉(zhuǎn)角速度不為零的流動窩量場:旋轉(zhuǎn)角速度或者在流場中的分布渦線:線上任意點的切線方向與該點的渦量方向一致的假想曲線,渦線 組成的集束稱為渦束 渦線的方程,由得到:3.3 流體微團(tuán)運動分析第三十六張,PPT共五十頁,創(chuàng)作于2022年6月36【例】設(shè)平面流場為u=ky, v=0 (k為大于零的常數(shù))。 試分析該流場的運動學(xué)特征。 【解】速度分布如圖所示。由流線微分方程 k y dy = 0,積分得流線方程 y = C說明流線是平行于x軸的直線族。 x, y方向的線應(yīng)變率和 x y平面內(nèi)的角變形率分別為線元既不伸長也不縮短,互

19、相正交的線元隨時間增長夾角不斷變化。yx0,流體自左向右流動時正交線元的夾角不斷減小。3.3 流體微團(tuán)運動分析第三十七張,PPT共五十頁,創(chuàng)作于2022年6月37流體的旋轉(zhuǎn)角速度為 說明一點鄰域內(nèi)的流體作順時針旋轉(zhuǎn)(形成速度線形增長的基礎(chǔ))。 面積擴(kuò)張率為 屬不可壓縮流動。圖中四邊形流體面在運動過程中面積保持不變,對角線與x軸的夾角不斷減小,流體面不斷拉長和變窄。 3.3 流體微團(tuán)運動分析第三十八張,PPT共五十頁,創(chuàng)作于2022年6月383.4 粘性流體的流動形態(tài)1.雷諾實驗 雷諾實驗裝置第三十九張,PPT共五十頁,創(chuàng)作于2022年6月393.4 粘性流體的流動形態(tài)(1)當(dāng)速度較小時,染液線

20、為一條平滑直線;測速信號也是一條平滑直線; hf與V呈線性關(guān)系(2)當(dāng)速度逐漸增大后,染液開始波動;測速信號發(fā)生間歇性脈動,說明流動開始向不穩(wěn)定狀態(tài)轉(zhuǎn)變;hf與V關(guān)系不確定實驗結(jié)果(3)當(dāng)速度繼續(xù)增大后,染液線突然變得模糊,并彌散到整個管內(nèi);測速信號變?yōu)檫B續(xù)不斷的隨機(jī)脈; hf與V的1.752次方成正比第四十張,PPT共五十頁,創(chuàng)作于2022年6月403.4 粘性流體的流動形態(tài) 過渡區(qū)湍流區(qū)第四十一張,PPT共五十頁,創(chuàng)作于2022年6月412.雷諾準(zhǔn)則 雷諾通過圓管定常流動系列實驗發(fā)現(xiàn),層流與湍流的轉(zhuǎn)捩不僅僅取決于速度,而是取決于一個組合的無量綱數(shù)雷諾數(shù) 其中V 流速,d 特征長度,流體密度

21、、 粘度圓管臨界雷諾數(shù)當(dāng)Re2300時將發(fā)生湍流。 3.4 粘性流體的流動形態(tài)上臨界雷諾數(shù):流體流動從層流完全轉(zhuǎn)變?yōu)橥牧鞯睦字Z數(shù)下臨界雷諾數(shù):流體流動從湍流完全轉(zhuǎn)變?yōu)閷恿鞯睦字Z數(shù)第四十二張,PPT共五十頁,創(chuàng)作于2022年6月42【例3-4】水在內(nèi)徑d=0.1m 的圓管內(nèi)流動,流速V=0.4m/s,水的運動黏度=110-6m2/s,試問水在管中呈何種流態(tài)?若設(shè)管中的流體是油,流速不變而運動黏度=3110-6m2/s,試問油在管中呈何種流態(tài)?【解】水的流動雷諾數(shù)水在管中呈湍流狀態(tài)油的流動雷諾數(shù)油在管中呈層流狀態(tài)3.4 粘性流體的流動形態(tài)第四十三張,PPT共五十頁,創(chuàng)作于2022年6月433.5 流體流動的分類1. 流動的分類第四十四張,PPT共五十頁,創(chuàng)作于2022年6月442.定常流動和非定常流動3.2 流體流動的速度場 根據(jù)流體的流動參數(shù)是否隨時間而變化,可將流體的流動分為定常流動和非定常流動,定常流動:流動參數(shù)不隨時間變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論