![2017年江蘇高考數(shù)學(xué)試題及答案_第1頁(yè)](http://file4.renrendoc.com/view/040efb35aca6f7a5e16567384365ab9e/040efb35aca6f7a5e16567384365ab9e1.gif)
![2017年江蘇高考數(shù)學(xué)試題及答案_第2頁(yè)](http://file4.renrendoc.com/view/040efb35aca6f7a5e16567384365ab9e/040efb35aca6f7a5e16567384365ab9e2.gif)
![2017年江蘇高考數(shù)學(xué)試題及答案_第3頁(yè)](http://file4.renrendoc.com/view/040efb35aca6f7a5e16567384365ab9e/040efb35aca6f7a5e16567384365ab9e3.gif)
![2017年江蘇高考數(shù)學(xué)試題及答案_第4頁(yè)](http://file4.renrendoc.com/view/040efb35aca6f7a5e16567384365ab9e/040efb35aca6f7a5e16567384365ab9e4.gif)
![2017年江蘇高考數(shù)學(xué)試題及答案_第5頁(yè)](http://file4.renrendoc.com/view/040efb35aca6f7a5e16567384365ab9e/040efb35aca6f7a5e16567384365ab9e5.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2017年江蘇省高考數(shù)學(xué)試卷一.填空題1(5分)已知集合A=1,2,B=a,a2+3若AB=1,則實(shí)數(shù)a的值為 2(5分)已知復(fù)數(shù)z=(1+i)(1+2i),其中i是虛數(shù)單位,則z的模是 3(5分)某工廠(chǎng)生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200,400,300,100件為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取 件4(5分)如圖是一個(gè)算法流程圖:若輸入x的值為,則輸出y的值是 5(5分)若tan()=則tan= 6(5分)如圖,在圓柱O1O2內(nèi)有一個(gè)球O,該球與圓柱的上、下底面及母線(xiàn)均相切,記圓柱O1O2的體積為V1,球O
2、的體積為V2,則的值是 7(5分)記函數(shù)f(x)=定義域?yàn)镈在區(qū)間4,5上隨機(jī)取一個(gè)數(shù)x,則xD的概率是 8(5分)在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)y2=1的右準(zhǔn)線(xiàn)與它的兩條漸近線(xiàn)分別交于點(diǎn)P,Q,其焦點(diǎn)是F1,F(xiàn)2,則四邊形F1PF2Q的面積是 9(5分)等比數(shù)列an的各項(xiàng)均為實(shí)數(shù),其前n項(xiàng)為Sn,已知S3=,S6=,則a8= 10(5分)某公司一年購(gòu)買(mǎi)某種貨物600噸,每次購(gòu)買(mǎi)x噸,運(yùn)費(fèi)為6萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為4x萬(wàn)元要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x的值是 11(5分)已知函數(shù)f(x)=x32x+ex,其中e是自然對(duì)數(shù)的底數(shù)若f(a1)+f(2a2)0則實(shí)數(shù)a的取值范圍是
3、 12(5分)如圖,在同一個(gè)平面內(nèi),向量,的模分別為1,1,與的夾角為,且tan=7,與的夾角為45若=m+n(m,nR),則m+n= 13(5分)在平面直角坐標(biāo)系xOy中,A(12,0),B(0,6),點(diǎn)P在圓O:x2+y2=50上若20,則點(diǎn)P的橫坐標(biāo)的取值范圍是 14(5分)設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間0,1)上,f(x)=,其中集合D=x|x=,nN*,則方程f(x)lgx=0的解的個(gè)數(shù)是 二.解答題15(14分)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EFAD求證:(1)EF平面ABC;
4、(2)ADAC16(14分)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)記f(x)=,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值17(14分)如圖,在平面直角坐標(biāo)系xOy中,橢圓E:=1(ab0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,兩準(zhǔn)線(xiàn)之間的距離為8點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線(xiàn)PF1的垂線(xiàn)l1,過(guò)點(diǎn)F2作直線(xiàn)PF2的垂線(xiàn)l2(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)若直線(xiàn)l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo)18(16分)如圖,水平放置的正四棱柱形玻璃容器和正四棱臺(tái)形玻璃容器的高均為32cm,容器的底面對(duì)角線(xiàn)AC的長(zhǎng)為10cm,容器的兩底面對(duì)
5、角線(xiàn)EG,E1G1的長(zhǎng)分別為14cm和62cm分別在容器和容器中注入水,水深均為12cm現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))(1)將l放在容器中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒(méi)入水中部分的長(zhǎng)度;(2)將l放在容器中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒(méi)入水中部分的長(zhǎng)度19(16分)對(duì)于給定的正整數(shù)k,若數(shù)列an滿(mǎn)足:ank+ank+1+an1+an+1+an+k1+an+k=2kan對(duì)任意正整數(shù)n(nk)總成立,則稱(chēng)數(shù)列an是“P(k)數(shù)列”(1)證明:等差數(shù)列an是“P(3)數(shù)列”;(2)若數(shù)列an既是“P(2)數(shù)列”,又是“
6、P(3)數(shù)列”,證明:an是等差數(shù)列20(16分)已知函數(shù)f(x)=x3+ax2+bx+1(a0,bR)有極值,且導(dǎo)函數(shù)f(x)的極值點(diǎn)是f(x)的零點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫(xiě)出定義域;(2)證明:b23a;(3)若f(x),f(x)這兩個(gè)函數(shù)的所有極值之和不小于,求a的取值范圍二.非選擇題,附加題(21-24選做題)【選修4-1:幾何證明選講】(本小題滿(mǎn)分0分)21如圖,AB為半圓O的直徑,直線(xiàn)PC切半圓O于點(diǎn)C,APPC,P為垂足求證:(1)PAC=CAB;(2)AC2 =APAB選修4-2:矩陣與變換22已知矩陣A=,B=(1)求AB;
7、(2)若曲線(xiàn)C1:=1在矩陣AB對(duì)應(yīng)的變換作用下得到另一曲線(xiàn)C2,求C2的方程選修4-4:坐標(biāo)系與參數(shù)方程23在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l的參數(shù)方程為(t為參數(shù)),曲線(xiàn)C的參數(shù)方程為(s為參數(shù))設(shè)P為曲線(xiàn)C上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最小值選修4-5:不等式選講24已知a,b,c,d為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd8【必做題】25如圖,在平行六面體ABCDA1B1C1D1中,AA1平面ABCD,且AB=AD=2,AA1=,BAD=120(1)求異面直線(xiàn)A1B與AC1所成角的余弦值;(2)求二面角BA1DA的正弦值26已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n
8、N*,n2),這些球除顏色外全部相同現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,m+n的抽屜內(nèi),其中第k次取出的球放入編號(hào)為k的抽屜(k=1,2,3,m+n)123m+n(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)2017年江蘇省高考數(shù)學(xué)試卷參考答案與試題解析一.填空題1(5分)(2017江蘇)已知集合A=1,2,B=a,a2+3若AB=1,則實(shí)數(shù)a的值為1【分析】利用交集定義直接求解【解答】解:集合A=1,2,B=a,a2+3AB=1,a=1或a2+3=1,解得a=1故答案為:
9、1【點(diǎn)評(píng)】本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義及性質(zhì)的合理運(yùn)用2(5分)(2017江蘇)已知復(fù)數(shù)z=(1+i)(1+2i),其中i是虛數(shù)單位,則z的模是【分析】利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出【解答】解:復(fù)數(shù)z=(1+i)(1+2i)=12+3i=1+3i,|z|=故答案為:【點(diǎn)評(píng)】本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題3(5分)(2017江蘇)某工廠(chǎng)生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200,400,300,100件為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品
10、中抽取18件【分析】由題意先求出抽樣比例即為,再由此比例計(jì)算出應(yīng)從丙種型號(hào)的產(chǎn)品中抽取的數(shù)目【解答】解:產(chǎn)品總數(shù)為200+400+300+100=1000件,而抽取60輛進(jìn)行檢驗(yàn),抽樣比例為=,則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取300=18件,故答案為:18【點(diǎn)評(píng)】本題的考點(diǎn)是分層抽樣分層抽樣即要抽樣時(shí)保證樣本的結(jié)構(gòu)和總體的結(jié)構(gòu)保持一致,按照一定的比例,即樣本容量和總體容量的比值,在各層中進(jìn)行抽取4(5分)(2017江蘇)如圖是一個(gè)算法流程圖:若輸入x的值為,則輸出y的值是2【分析】直接模擬程序即得結(jié)論【解答】解:初始值x=,不滿(mǎn)足x1,所以y=2+log2=2=2,故答案為:2【點(diǎn)評(píng)】本題考查程序框
11、圖,模擬程序是解決此類(lèi)問(wèn)題的常用方法,注意解題方法的積累,屬于基礎(chǔ)題5(5分)(2017江蘇)若tan()=則tan=【分析】直接根據(jù)兩角差的正切公式計(jì)算即可【解答】解:tan()=6tan6=tan+1,解得tan=,故答案為:【點(diǎn)評(píng)】本題考查了兩角差的正切公式,屬于基礎(chǔ)題6(5分)(2017江蘇)如圖,在圓柱O1O2內(nèi)有一個(gè)球O,該球與圓柱的上、下底面及母線(xiàn)均相切,記圓柱O1O2的體積為V1,球O的體積為V2,則的值是【分析】設(shè)出球的半徑,求出圓柱的體積以及球的體積即可得到結(jié)果【解答】解:設(shè)球的半徑為R,則球的體積為:R3,圓柱的體積為:R22R=2R3則=故答案為:【點(diǎn)評(píng)】本題考查球的體
12、積以及圓柱的體積的求法,考查空間想象能力以及計(jì)算能力7(5分)(2017江蘇)記函數(shù)f(x)=定義域?yàn)镈在區(qū)間4,5上隨機(jī)取一個(gè)數(shù)x,則xD的概率是【分析】求出函數(shù)的定義域,結(jié)合幾何概型的概率公式進(jìn)行計(jì)算即可【解答】解:由6+xx20得x2x60,得2x3,則D=2,3,則在區(qū)間4,5上隨機(jī)取一個(gè)數(shù)x,則xD的概率P=,故答案為:【點(diǎn)評(píng)】本題主要考查幾何概型的概率公式的計(jì)算,結(jié)合函數(shù)的定義域求出D,以及利用幾何概型的概率公式是解決本題的關(guān)鍵8(5分)(2017江蘇)在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)y2=1的右準(zhǔn)線(xiàn)與它的兩條漸近線(xiàn)分別交于點(diǎn)P,Q,其焦點(diǎn)是F1,F(xiàn)2,則四邊形F1PF2Q的面積是
13、【分析】求出雙曲線(xiàn)的準(zhǔn)線(xiàn)方程和漸近線(xiàn)方程,得到P,Q坐標(biāo),求出焦點(diǎn)坐標(biāo),然后求解四邊形的面積【解答】解:雙曲線(xiàn)y2=1的右準(zhǔn)線(xiàn):x=,雙曲線(xiàn)漸近線(xiàn)方程為:y=x,所以P(,),Q(,),F(xiàn)1(2,0)F2(2,0)則四邊形F1PF2Q的面積是:=2故答案為:2【點(diǎn)評(píng)】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力9(5分)(2017江蘇)等比數(shù)列an的各項(xiàng)均為實(shí)數(shù),其前n項(xiàng)為Sn,已知S3=,S6=,則a8=32【分析】設(shè)等比數(shù)列an的公比為q1,S3=,S6=,可得=,=,聯(lián)立解出即可得出【解答】解:設(shè)等比數(shù)列an的公比為q1,S3=,S6=,=,=,解得a1=,q=2則a8=32故答案為:3
14、2【點(diǎn)評(píng)】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題10(5分)(2017江蘇)某公司一年購(gòu)買(mǎi)某種貨物600噸,每次購(gòu)買(mǎi)x噸,運(yùn)費(fèi)為6萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為4x萬(wàn)元要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x的值是30【分析】由題意可得:一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和=+4x,利用基本不等式的性質(zhì)即可得出【解答】解:由題意可得:一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和=+4x42=240(萬(wàn)元)當(dāng)且僅當(dāng)x=30時(shí)取等號(hào)故答案為:30【點(diǎn)評(píng)】本題考查了基本不等式的性質(zhì)及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題11(5分)(2017江蘇)已知函數(shù)f(x)=x32x+ex
15、,其中e是自然對(duì)數(shù)的底數(shù)若f(a1)+f(2a2)0則實(shí)數(shù)a的取值范圍是1,【分析】求出f(x)的導(dǎo)數(shù),由基本不等式和二次函數(shù)的性質(zhì),可得f(x)在R上遞增;再由奇偶性的定義,可得f(x)為奇函數(shù),原不等式即為2a21a,運(yùn)用二次不等式的解法即可得到所求范圍【解答】解:函數(shù)f(x)=x32x+ex的導(dǎo)數(shù)為:f(x)=3x22+ex+2+2=0,可得f(x)在R上遞增;又f(x)+f(x)=(x)3+2x+exex+x32x+ex=0,可得f(x)為奇函數(shù),則f(a1)+f(2a2)0,即有f(2a2)f(a1)=f(1a),即有2a21a,解得1a,故答案為:1,【點(diǎn)評(píng)】本題考查函數(shù)的單調(diào)性和
16、奇偶性的判斷和應(yīng)用,注意運(yùn)用導(dǎo)數(shù)和定義法,考查轉(zhuǎn)化思想的運(yùn)用和二次不等式的解法,考查運(yùn)算能力,屬于中檔題12(5分)(2017江蘇)如圖,在同一個(gè)平面內(nèi),向量,的模分別為1,1,與的夾角為,且tan=7,與的夾角為45若=m+n(m,nR),則m+n=3【分析】如圖所示,建立直角坐標(biāo)系A(chǔ)(1,0)由與的夾角為,且tan=7可得cos=,sin=C可得cos(+45)=sin(+45)=B利用=m+n(m,nR),即可得出【解答】解:如圖所示,建立直角坐標(biāo)系A(chǔ)(1,0)由與的夾角為,且tan=7cos=,sin=Ccos(+45)=(cossin)=sin(+45)=(sin+cos)=B=m+
17、n(m,nR),=mn,=0+n,解得n=,m=則m+n=3故答案為:3【點(diǎn)評(píng)】本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題13(5分)(2017江蘇)在平面直角坐標(biāo)系xOy中,A(12,0),B(0,6),點(diǎn)P在圓O:x2+y2=50上若20,則點(diǎn)P的橫坐標(biāo)的取值范圍是5,1【分析】根據(jù)題意,設(shè)P(x0,y0),由數(shù)量積的坐標(biāo)計(jì)算公式化簡(jiǎn)變形可得2x0+y0+50,分析可得其表示表示直線(xiàn)2x+y+50以及直線(xiàn)下方的區(qū)域,聯(lián)立直線(xiàn)與圓的方程可得交點(diǎn)的橫坐標(biāo),結(jié)合圖形分析可得答案【解答】解:根據(jù)題意,設(shè)P(x0,y0),則有x02+y02=50,=(12x0,y0)
18、(x0,6y0)=(12+x0)x0y0(6y0)=12x0+6y+x02+y0220,化為:12x06y0+300,即2x0y0+50,表示直線(xiàn)2x+y+50以及直線(xiàn)下方的區(qū)域,聯(lián)立,解可得x0=5或x0=1,結(jié)合圖形分析可得:點(diǎn)P的橫坐標(biāo)x0的取值范圍是5,1,故答案為:5,1【點(diǎn)評(píng)】本題考查數(shù)量積的運(yùn)算以及直線(xiàn)與圓的位置關(guān)系,關(guān)鍵是利用數(shù)量積化簡(jiǎn)變形得到關(guān)于x0、y0的關(guān)系式14(5分)(2017江蘇)設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間0,1)上,f(x)=,其中集合D=x|x=,nN*,則方程f(x)lgx=0的解的個(gè)數(shù)是8【分析】由已知中f(x)是定義在R上且周期為1的函
19、數(shù),在區(qū)間0,1)上,f(x)=,其中集合D=x|x=,nN*,分析f(x)的圖象與y=lgx圖象交點(diǎn)的個(gè)數(shù),進(jìn)而可得答案【解答】解:在區(qū)間0,1)上,f(x)=,第一段函數(shù)上的點(diǎn)的橫縱坐標(biāo)均為有理數(shù),又f(x)是定義在R上且周期為1的函數(shù),在區(qū)間1,2)上,f(x)=,此時(shí)f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);同理:區(qū)間2,3)上,f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);區(qū)間3,4)上,f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);區(qū)間4,5)上,f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);區(qū)間5,6)上,f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);區(qū)間6,7)上,f(x)的圖象與y
20、=lgx有且只有一個(gè)交點(diǎn);區(qū)間7,8)上,f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);區(qū)間8,9)上,f(x)的圖象與y=lgx有且只有一個(gè)交點(diǎn);在區(qū)間9,+)上,f(x)的圖象與y=lgx無(wú)交點(diǎn);故f(x)的圖象與y=lgx有8個(gè)交點(diǎn);即方程f(x)lgx=0的解的個(gè)數(shù)是8,故答案為:8【點(diǎn)評(píng)】本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,函數(shù)的圖象和性質(zhì),轉(zhuǎn)化思想,難度中檔二.解答題15(14分)(2017江蘇)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EFAD求證:(1)EF平面ABC;(2)ADAC【分析】(1
21、)利用ABEF及線(xiàn)面平行判定定理可得結(jié)論;(2)通過(guò)取線(xiàn)段CD上點(diǎn)G,連結(jié)FG、EG使得FGBC,則EGAC,利用線(xiàn)面垂直的性質(zhì)定理可知FGAD,結(jié)合線(xiàn)面垂直的判定定理可知AD平面EFG,從而可得結(jié)論【解答】證明:(1)因?yàn)锳BAD,EFAD,且A、B、E、F四點(diǎn)共面,所以ABEF,又因?yàn)镋F平面ABC,AB平面ABC,所以由線(xiàn)面平行判定定理可知:EF平面ABC;(2)在線(xiàn)段CD上取點(diǎn)G,連結(jié)FG、EG使得FGBC,則EGAC,因?yàn)锽CBD,所以FGBC,又因?yàn)槠矫鍭BD平面BCD,所以FG平面ABD,所以FGAD,又因?yàn)锳DEF,且EFFG=F,所以AD平面EFG,所以ADEG,故ADAC【
22、點(diǎn)評(píng)】本題考查線(xiàn)面平行及線(xiàn)線(xiàn)垂直的判定,考查空間想象能力,考查轉(zhuǎn)化思想,涉及線(xiàn)面平行判定定理,線(xiàn)面垂直的性質(zhì)及判定定理,注意解題方法的積累,屬于中檔題16(14分)(2017江蘇)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)記f(x)=,求f(x)的最大值和最小值以及對(duì)應(yīng)的x的值【分析】(1)根據(jù)向量的平行即可得到tanx=,問(wèn)題得以解決,(2)根據(jù)向量的數(shù)量積和兩角和余弦公式和余弦函數(shù)的性質(zhì)即可求出【解答】解:(1)=(cosx,sinx),=(3,),cosx=3sinx,tanx=,x0,x=,(2)f(x)=3cosxsinx=2(cosxsinx)=
23、2cos(x+),x0,x+,1cos(x+),當(dāng)x=0時(shí),f(x)有最大值,最大值3,當(dāng)x=時(shí),f(x)有最小值,最大值2【點(diǎn)評(píng)】本題考查了向量的平行和向量的數(shù)量積以及三角函數(shù)的化簡(jiǎn)和三角函數(shù)的性質(zhì),屬于基礎(chǔ)題17(14分)(2017江蘇)如圖,在平面直角坐標(biāo)系xOy中,橢圓E:=1(ab0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,兩準(zhǔn)線(xiàn)之間的距離為8點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線(xiàn)PF1的垂線(xiàn)l1,過(guò)點(diǎn)F2作直線(xiàn)PF2的垂線(xiàn)l2(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)若直線(xiàn)l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo)【分析】(1)由橢圓的離心率公式求得a=2c,由橢圓的準(zhǔn)線(xiàn)方程x=,則
24、2=8,即可求得a和c的值,則b2=a2c2=3,即可求得橢圓方程;(2)設(shè)P點(diǎn)坐標(biāo),分別求得直線(xiàn)PF2的斜率及直線(xiàn)PF1的斜率,則即可求得l2及l(fā)1的斜率及方程,聯(lián)立求得Q點(diǎn)坐標(biāo),由Q在橢圓方程,求得y02=x021,聯(lián)立即可求得P點(diǎn)坐標(biāo);方法二:設(shè)P(m,n),當(dāng)m1時(shí),=,=,求得直線(xiàn)l1及l(fā)1的方程,聯(lián)立求得Q點(diǎn)坐標(biāo),根據(jù)對(duì)稱(chēng)性可得=n2,聯(lián)立橢圓方程,即可求得P點(diǎn)坐標(biāo)【解答】解:(1)由題意可知:橢圓的離心率e=,則a=2c,橢圓的準(zhǔn)線(xiàn)方程x=,由2=8,由解得:a=2,c=1,則b2=a2c2=3,橢圓的標(biāo)準(zhǔn)方程:;(2)方法一:設(shè)P(x0,y0),則直線(xiàn)PF2的斜率=,則直線(xiàn)l2
25、的斜率k2=,直線(xiàn)l2的方程y=(x1),直線(xiàn)PF1的斜率=,則直線(xiàn)l2的斜率k2=,直線(xiàn)l2的方程y=(x+1),聯(lián)立,解得:,則Q(x0,),由P,Q在橢圓上,P,Q的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)應(yīng)相等,則y0=,y02=x021,則,解得:,則,又P在第一象限,所以P的坐標(biāo)為:P(,)方法二:設(shè)P(m,n),由P在第一象限,則m0,n0,當(dāng)m=1時(shí),不存在,解得:Q與F1重合,不滿(mǎn)足題意,當(dāng)m1時(shí),=,=,由l1PF1,l2PF2,則=,=,直線(xiàn)l1的方程y=(x+1),直線(xiàn)l2的方程y=(x1),聯(lián)立解得:x=m,則Q(m,),由Q在橢圓方程,由對(duì)稱(chēng)性可得:=n2,即m2n2=1,或m2+
26、n2=1,由P(m,n),在橢圓方程,解得:,或,無(wú)解,又P在第一象限,所以P的坐標(biāo)為:P(,)【點(diǎn)評(píng)】本題考查橢圓的標(biāo)準(zhǔn)方程,直線(xiàn)與橢圓的位置關(guān)系,考查直線(xiàn)的斜率公式,考查數(shù)形結(jié)合思想,考查計(jì)算能力,屬于中檔題18(16分)(2017江蘇)如圖,水平放置的正四棱柱形玻璃容器和正四棱臺(tái)形玻璃容器的高均為32cm,容器的底面對(duì)角線(xiàn)AC的長(zhǎng)為10cm,容器的兩底面對(duì)角線(xiàn)EG,E1G1的長(zhǎng)分別為14cm和62cm分別在容器和容器中注入水,水深均為12cm現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))(1)將l放在容器中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒(méi)入水中部
27、分的長(zhǎng)度;(2)將l放在容器中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒(méi)入水中部分的長(zhǎng)度【分析】(1)設(shè)玻璃棒在CC1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,過(guò)N作NPMC,交AC于點(diǎn)P,推導(dǎo)出CC1平面ABCD,CC1AC,NPAC,求出MC=30cm,推導(dǎo)出ANPAMC,由此能出玻璃棒l沒(méi)入水中部分的長(zhǎng)度(2)設(shè)玻璃棒在GG1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,過(guò)點(diǎn)N作NPEG,交EG于點(diǎn)P,過(guò)點(diǎn)E作EQE1G1,交E1G1于點(diǎn)Q,推導(dǎo)出EE1G1G為等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sinGEM=,由此能求出玻璃棒l沒(méi)入水中部分的長(zhǎng)度【解答】解:(1)
28、設(shè)玻璃棒在CC1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,在平面ACM中,過(guò)N作NPMC,交AC于點(diǎn)P,ABCDA1B1C1D1為正四棱柱,CC1平面ABCD,又AC平面ABCD,CC1AC,NPAC,NP=12cm,且AM2=AC2+MC2,解得MC=30cm,NPMC,ANPAMC,=,得AN=16cm玻璃棒l沒(méi)入水中部分的長(zhǎng)度為16cm(2)設(shè)玻璃棒在GG1上的點(diǎn)為M,玻璃棒與水面的交點(diǎn)為N,在平面E1EGG1中,過(guò)點(diǎn)N作NPEG,交EG于點(diǎn)P,過(guò)點(diǎn)E作EQE1G1,交E1G1于點(diǎn)Q,EFGHE1F1G1H1為正四棱臺(tái),EE1=GG1,EGE1G1,EGE1G1,EE1G1G為等腰梯形,畫(huà)出平
29、面E1EGG1的平面圖,E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,E1Q=24cm,由勾股定理得:E1E=40cm,sinEE1G1=,sinEGM=sinEE1G1=,cos,根據(jù)正弦定理得:=,sin,cos,sinGEM=sin(EGM+EMG)=sinEGMcosEMG+cosEGMsinEMG=,EN=20cm玻璃棒l沒(méi)入水中部分的長(zhǎng)度為20cm【點(diǎn)評(píng)】本題考查玻璃棒l沒(méi)入水中部分的長(zhǎng)度的求法,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題19(16分)(2017江蘇
30、)對(duì)于給定的正整數(shù)k,若數(shù)列an滿(mǎn)足:ank+ank+1+an1+an+1+an+k1+an+k=2kan對(duì)任意正整數(shù)n(nk)總成立,則稱(chēng)數(shù)列an是“P(k)數(shù)列”(1)證明:等差數(shù)列an是“P(3)數(shù)列”;(2)若數(shù)列an既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:an是等差數(shù)列【分析】(1)由題意可知根據(jù)等差數(shù)列的性質(zhì),an3+an2+an1+an+1+an+2+an+3=(an3+an+3)+(an2+an+2)+(an1+an+1)23an,根據(jù)“P(k)數(shù)列”的定義,可得數(shù)列an是“P(3)數(shù)列”;(2)由“P(k)數(shù)列”的定義,則an2+an1+an+1+an+2=4an,
31、an3+an2+an1+an+1+an+2+an+3=6an,變形整理即可求得2an=an1+an+1,即可證明數(shù)列an是等差數(shù)列【解答】解:(1)證明:設(shè)等差數(shù)列an首項(xiàng)為a1,公差為d,則an=a1+(n1)d,則an3+an2+an1+an+1+an+2+an+3,=(an3+an+3)+(an2+an+2)+(an1+an+1),=2an+2an+2an,=23an,等差數(shù)列an是“P(3)數(shù)列”;(2)證明:由數(shù)列an是“P(2)數(shù)列”則an2+an1+an+1+an+2=4an,數(shù)列an是“P(3)數(shù)列”an3+an2+an1+an+1+an+2+an+3=6an,由可知:an3+
32、an2+an+an+1=4an1,an1+an+an+2+an+3=4an+1,由(+):2an=6an4an14an+1,整理得:2an=an1+an+1,數(shù)列an是等差數(shù)列【點(diǎn)評(píng)】本題考查等差數(shù)列的性質(zhì),考查數(shù)列的新定義的性質(zhì),考查數(shù)列的運(yùn)算,考查轉(zhuǎn)化思想,屬于中檔題20(16分)(2017江蘇)已知函數(shù)f(x)=x3+ax2+bx+1(a0,bR)有極值,且導(dǎo)函數(shù)f(x)的極值點(diǎn)是f(x)的零點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)(1)求b關(guān)于a的函數(shù)關(guān)系式,并寫(xiě)出定義域;(2)證明:b23a;(3)若f(x),f(x)這兩個(gè)函數(shù)的所有極值之和不小于,求a的取值范圍【分析】(1)通
33、過(guò)對(duì)f(x)=x3+ax2+bx+1求導(dǎo)可知g(x)=f(x)=3x2+2ax+b,進(jìn)而再求導(dǎo)可知g(x)=6x+2a,通過(guò)令g(x)=0進(jìn)而可知f(x)的極小值點(diǎn)為x=,從而f()=0,整理可知b=+(a0),結(jié)合f(x)=x3+ax2+bx+1(a0,bR)有極值可知f(x)=0有兩個(gè)不等的實(shí)根,進(jìn)而可知a3(2)通過(guò)(1)構(gòu)造函數(shù)h(a)=b23a=+=(4a327)(a327),結(jié)合a3可知h(a)0,從而可得結(jié)論;(3)通過(guò)(1)可知f(x)的極小值為f()=b,利用韋達(dá)定理及完全平方關(guān)系可知y=f(x)的兩個(gè)極值之和為+2,進(jìn)而問(wèn)題轉(zhuǎn)化為解不等式b+2=,因式分解即得結(jié)論【解答】(
34、1)解:因?yàn)閒(x)=x3+ax2+bx+1,所以g(x)=f(x)=3x2+2ax+b,g(x)=6x+2a,令g(x)=0,解得x=由于當(dāng)x時(shí)g(x)0,g(x)=f(x)單調(diào)遞增;當(dāng)x時(shí)g(x)0,g(x)=f(x)單調(diào)遞減;所以f(x)的極小值點(diǎn)為x=,由于導(dǎo)函數(shù)f(x)的極值點(diǎn)是原函數(shù)f(x)的零點(diǎn),所以f()=0,即+1=0,所以b=+(a0)因?yàn)閒(x)=x3+ax2+bx+1(a0,bR)有極值,所以f(x)=3x2+2ax+b=0有兩個(gè)不等的實(shí)根,所以4a212b0,即a2+0,解得a3,所以b=+(a3)(2)證明:由(1)可知h(a)=b23a=+=(4a327)(a32
35、7),由于a3,所以h(a)0,即b23a;(3)解:由(1)可知f(x)的極小值為f()=b,設(shè)x1,x2是y=f(x)的兩個(gè)極值點(diǎn),則x1+x2=,x1x2=,所以f(x1)+f(x2)=+a(+)+b(x1+x2)+2=(x1+x2)(x1+x2)23x1x2+a(x1+x2)22x1x2+b(x1+x2)+2=+2,又因?yàn)閒(x),f(x)這兩個(gè)函數(shù)的所有極值之和不小于,所以b+2=,因?yàn)閍3,所以2a363a540,所以2a(a236)+9(a6)0,所以(a6)(2a2+12a+9)0,由于a3時(shí)2a2+12a+90,所以a60,解得a6,所以a的取值范圍是(3,6【點(diǎn)評(píng)】本題考查
36、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,考查運(yùn)算求解能力,考查轉(zhuǎn)化思想,注意解題方法的積累,屬于難題二.非選擇題,附加題(21-24選做題)【選修4-1:幾何證明選講】(本小題滿(mǎn)分0分)21(2017江蘇)如圖,AB為半圓O的直徑,直線(xiàn)PC切半圓O于點(diǎn)C,APPC,P為垂足求證:(1)PAC=CAB;(2)AC2 =APAB【分析】(1)利用弦切角定理可得:ACP=ABC利用圓的性質(zhì)可得ACB=90再利用三角形內(nèi)角和定理即可證明(2)由(1)可得:APCACB,即可證明【解答】證明:(1)直線(xiàn)PC切半圓O于點(diǎn)C,ACP=ABCAB為半圓O的直徑,ACB=90APPC,APC=90PAC=90ACP,C
37、AB=90ABC,PAC=CAB(2)由(1)可得:APCACB,=AC2 =APAB【點(diǎn)評(píng)】本題考查了弦切角定理、圓的性質(zhì)、三角形內(nèi)角和定理、三角形相似的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于中檔題選修4-2:矩陣與變換22(2017江蘇)已知矩陣A=,B=(1)求AB;(2)若曲線(xiàn)C1:=1在矩陣AB對(duì)應(yīng)的變換作用下得到另一曲線(xiàn)C2,求C2的方程【分析】(1)按矩陣乘法規(guī)律計(jì)算;(2)求出變換前后的坐標(biāo)變換規(guī)律,代入曲線(xiàn)C1的方程化簡(jiǎn)即可【解答】解:(1)AB=,(2)設(shè)點(diǎn)P(x,y)為曲線(xiàn)C1的任意一點(diǎn),點(diǎn)P在矩陣AB的變換下得到點(diǎn)P(x0,y0),則=,即x0=2y,y0=x,
38、x=y0,y=,即x02+y02=8,曲線(xiàn)C2的方程為x2+y2=8【點(diǎn)評(píng)】本題考查了矩陣乘法與矩陣變換,屬于中檔題選修4-4:坐標(biāo)系與參數(shù)方程23(2017江蘇)在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l的參數(shù)方程為(t為參數(shù)),曲線(xiàn)C的參數(shù)方程為(s為參數(shù))設(shè)P為曲線(xiàn)C上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最小值【分析】求出直線(xiàn)l的直角坐標(biāo)方程,代入距離公式化簡(jiǎn)得出距離d關(guān)于參數(shù)s的函數(shù),從而得出最短距離【解答】解:直線(xiàn)l的直角坐標(biāo)方程為x2y+8=0,P到直線(xiàn)l的距離d=,當(dāng)s=時(shí),d取得最小值=【點(diǎn)評(píng)】本題考查了參數(shù)方程的應(yīng)用,屬于基礎(chǔ)題選修4-5:不等式選講24(2017江蘇)已知a,b,c,d
39、為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd8【分析】a2+b2=4,c2+d2=16,令a=2cos,b=2sin,c=4cos,d=4sin代入ac+bd化簡(jiǎn),利用三角函數(shù)的單調(diào)性即可證明另解:由柯西不等式可得:(ac+bd)2(a2+b2)(c2+d2),即可得出【解答】證明:a2+b2=4,c2+d2=16,令a=2cos,b=2sin,c=4cos,d=4sinac+bd=8(coscos+sinsin)=8cos()8當(dāng)且僅當(dāng)cos()=1時(shí)取等號(hào)因此ac+bd8另解:由柯西不等式可得:(ac+bd)2(a2+b2)(c2+d2)=416=64,當(dāng)且僅當(dāng)時(shí)取等號(hào)8ac
40、+bd8【點(diǎn)評(píng)】本題考查了對(duì)和差公式、三角函數(shù)的單調(diào)性、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題【必做題】25(2017江蘇)如圖,在平行六面體ABCDA1B1C1D1中,AA1平面ABCD,且AB=AD=2,AA1=,BAD=120(1)求異面直線(xiàn)A1B與AC1所成角的余弦值;(2)求二面角BA1DA的正弦值【分析】在平面ABCD內(nèi),過(guò)A作AxAD,由AA1平面ABCD,可得AA1Ax,AA1AD,以A為坐標(biāo)原點(diǎn),分別以Ax、AD、AA1所在直線(xiàn)為x、y、z軸建立空間直角坐標(biāo)系結(jié)合已知求出A,B,C,D,A1,C1 的坐標(biāo),進(jìn)一步求出,的坐標(biāo)(1)直接利用兩法向量所成角的余弦值可得
41、異面直線(xiàn)A1B與AC1所成角的余弦值;(2)求出平面BA1D與平面A1AD的一個(gè)法向量,再由兩法向量所成角的余弦值求得二面角BA1DA的余弦值,進(jìn)一步得到正弦值【解答】解:在平面ABCD內(nèi),過(guò)A作AxAD,AA1平面ABCD,AD、Ax平面ABCD,AA1Ax,AA1AD,以A為坐標(biāo)原點(diǎn),分別以Ax、AD、AA1所在直線(xiàn)為x、y、z軸建立空間直角坐標(biāo)系A(chǔ)B=AD=2,AA1=,BAD=120,A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1()=(),=(),(1)cos=異面直線(xiàn)A1B與AC1所成角的余弦值為;(2)設(shè)平面BA1D的一個(gè)法向量為,由,得,取x
42、=,得;取平面A1AD的一個(gè)法向量為cos=二面角BA1DA的正弦值為,則二面角BA1DA的正弦值為【點(diǎn)評(píng)】本題考查異面直線(xiàn)所成的角與二面角,訓(xùn)練了利用空間向量求空間角,是中檔題26(2017江蘇)已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,nN*,n2),這些球除顏色外全部相同現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,m+n的抽屜內(nèi),其中第k次取出的球放入編號(hào)為k的抽屜(k=1,2,3,m+n)123m+n(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)【分析】(1)設(shè)事件Ai表示編號(hào)
43、為i的抽屜里放的是黑球,則p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(),由此能求出編號(hào)為2的抽屜內(nèi)放的是黑球的概率(2)X的所有可能取值為,P(x=)=,k=n,n+1,n+2,n+m,從而E(X)=()=,由此能證明E(X)【解答】解:(1)設(shè)事件Ai表示編號(hào)為i的抽屜里放的是黑球,則p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()=證明:(2)X的所有可能取值為,P(x=)=,k=n,n+1,n+2,n+m,E(X)=()=()=,E(X)【點(diǎn)評(píng)】本題考查概率的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力
44、,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題一.集合與函數(shù)1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.2.在應(yīng)用條件時(shí),易A忽略是空集的情況3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?5.你知道“否命題”與“命題的否定形式”的區(qū)別.6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則.7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng).8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.9.原函數(shù)在區(qū)間-a,a上單調(diào)遞增,則一定存在反函數(shù),且
45、反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.12.求函數(shù)的值域必須先求函數(shù)的定義域。13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?比較函數(shù)值的大小;解抽象函數(shù)不等式;求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最
46、值?16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?二.不等式18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.19.絕對(duì)值不等式的解法及其幾何意義是什么?20.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類(lèi)討論是關(guān)鍵”,注意解完之后要寫(xiě)上:“綜上,原不等式的解集是”.22.在求不等式的解集
47、、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即ab0,a0.三.數(shù)列24.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?25.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?27.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不
48、是連續(xù)的。)28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。四. HYPERLINK /search.aspx t /content/19/1226/14/_blank 三角函數(shù)29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(xiàn)(正弦線(xiàn)、余弦線(xiàn)、正切線(xiàn))的定義你知道嗎?31.在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?32.你還記得三角化簡(jiǎn)的通性通
49、法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是34.你還記得某些特殊角的三角函數(shù)值嗎?35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫(xiě)三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫(xiě)簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書(shū)寫(xiě)規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即.(2)方程表示的圖形的平移為“左+右-,上-下+”;
50、如直線(xiàn)左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即.(3)點(diǎn)的平移公式:點(diǎn)按向量平移到點(diǎn),則.37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)38.形如的周期都是,但的周期為。39.正弦定理時(shí)易忘比值還等于2R.五.平面向量40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒(méi)有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。41.數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出.已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒(méi)有.在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線(xiàn)的向量,
51、而右邊是與共線(xiàn)的向量.42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。六.解析幾何43.在用點(diǎn)斜式、斜截式求直線(xiàn)的方程時(shí),你是否注意到不存在的情況?44.用到角公式時(shí),易將直線(xiàn)l1、l2的斜率k1、k2的順序弄顛倒。45.直線(xiàn)的傾斜角、到的角、與的夾角的取值范圍依次是。46.定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?47.對(duì)不重合的兩條直線(xiàn)(建議在解題時(shí),討論后利用斜率和截距)48.直線(xiàn)在兩坐標(biāo)軸上的截距相等,直線(xiàn)方程可以理解為,但不要忘記當(dāng)時(shí),直線(xiàn)在兩坐標(biāo)軸上的截距都是0,亦為截距相等。49.解決線(xiàn)性規(guī)劃問(wèn)題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá).(設(shè)出變量,寫(xiě)出目標(biāo)函數(shù)寫(xiě)出線(xiàn)性約束條件畫(huà)出可行域作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線(xiàn),找到并求出最優(yōu)解應(yīng)用題一定要有答。)50.三種圓錐曲線(xiàn)的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線(xiàn)中的兩個(gè)特征三角形你掌握了嗎?51.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問(wèn)題?52.利用圓錐曲線(xiàn)第二定義解題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國(guó)DPO即服務(wù)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 山東省青島市高三第一次模擬考試語(yǔ)文試卷(含答案)
- 2025物業(yè)管理公司勞務(wù)合同
- 小額貸款居間合同范文
- 2025展板制作合同
- 連帶共同擔(dān)保合同簽訂
- 建設(shè)圍墻施工合同
- 提高團(tuán)隊(duì)效能與績(jī)效改進(jìn)
- 2025建筑工程居間合同
- 聘用人才勞動(dòng)合同
- 旅居管家策劃方案
- 車(chē)間消防安全知識(shí)培訓(xùn)課件
- 勞動(dòng)法概述勞動(dòng)法與新經(jīng)濟(jì)業(yè)態(tài)的結(jié)合
- 華為經(jīng)營(yíng)管理-華為的研發(fā)管理(6版)
- 鋰離子電池生產(chǎn)工藝流程圖
- 平衡計(jì)分卡-化戰(zhàn)略為行動(dòng)
- 幼兒園小班下學(xué)期期末家長(zhǎng)會(huì)PPT模板
- 礦山安全培訓(xùn)課件-地下礦山開(kāi)采安全技術(shù)
- GB/T 6417.1-2005金屬熔化焊接頭缺欠分類(lèi)及說(shuō)明
- 《社會(huì)主義市場(chǎng)經(jīng)濟(jì)理論(第三版)》第七章社會(huì)主義市場(chǎng)經(jīng)濟(jì)規(guī)則論
- 《腰椎間盤(pán)突出》課件
評(píng)論
0/150
提交評(píng)論