版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像( )A向左平移個單位長度B
2、向右平移個單位長度C向左平移個單位長度D向右平移個單位長度2已知圓與拋物線的準線相切,則的值為()A1B2CD43已知的垂心為,且是的中點,則( )A14B12C10D84甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是( )ABCD5如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為( )ABCD6如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點,且,則異面直線與所成角的余弦值為( )ABCD7設(shè)是定義域為的偶函數(shù),且在單調(diào)遞增,則( )ABCD8復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于( )A第一象限B第二象限C第
3、三象限D(zhuǎn)第四象限9在關(guān)于的不等式中,“”是“恒成立”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件10若,則的虛部是A3BCD11窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨特,神獸人們喜愛下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是( )ABCD12在中,點滿足,則等于( )A10B9C8D7二、填空題:本題共4小題,每小題5分,共20分。13正四面體的各個
4、點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為_14已知一個四面體的每個頂點都在表面積為的球的表面上,且,則_15已知數(shù)列滿足:,若對任意的正整數(shù)均有,則實數(shù)的最大值是_.16已知多項式滿足,則_,_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosAasinB1(1)求A;(2)已知a2,B,求ABC的面積18(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列an(II)求數(shù)列n2ana19(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)
5、遞增區(qū)間及圖象的對稱軸方程.20(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學(xué)生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負責(zé)人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0021(12分)為增強學(xué)生的法治觀念,營造“
6、學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開展了“憲法小衛(wèi)士”活動,并組織全校學(xué)生進行法律知識競賽現(xiàn)從全校學(xué)生中隨機抽取50名學(xué)生,統(tǒng)計他們的競賽成績,已知這50名學(xué)生的競賽成績均在50,100內(nèi),并得到如下的頻數(shù)分布表:分數(shù)段50,60)60,70)70,80)80,90)90,100人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學(xué)生中抽取
7、5名學(xué)生,再從這5名學(xué)生中隨機抽取2名學(xué)生,求這2名學(xué)生競賽成績都合格的概率參考公式及數(shù)據(jù):,其中22(10分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.2B【解析】因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知
8、,圓心到直線的距離等于 半徑,可知的值為2,選B.【詳解】請在此輸入詳解!3A【解析】由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因為為的垂心,所以,所以,而, 所以,因為是的中點,所以故選:A【點睛】本題考查了利用向量的線性運算和向量的數(shù)量積的運算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.4D【解析】先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,
9、共1種,所以甲第一個到、丙第三個到的概率是. 故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.5D【解析】使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題6B【解析】建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.7C【解析】根據(jù)偶函數(shù)的性質(zhì),比較
10、即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【點睛】本題考查對數(shù)的運算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.8A【解析】試題分析:由題意可得:. 共軛復(fù)數(shù)為,故選A.考點:1.復(fù)數(shù)的除法運算;2.以及復(fù)平面上的點與復(fù)數(shù)的關(guān)系9C【解析】討論當(dāng)時,是否恒成立;討論當(dāng)恒成立時,是否成立,即可選出正確答案.【詳解】解:當(dāng)時,由開口向上,則恒成立;當(dāng)恒成立時,若,則 不恒成立,不符合題意,若 時,要使得恒成立,則 ,即 .所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出 是 的充分條件;
11、若,則推出 是 的必要條件.10B【解析】因為,所以的虛部是.故選B11D【解析】由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.12D【解析】利用已知條件,表示出向量 ,然后求解向量的數(shù)量積【詳解】在中,點滿足,可得 則=【點睛】本題考查了向量的數(shù)量積運算,關(guān)鍵是利用基向量表示所求向量二、填空題:本題共4小題,每小題5分,共20分。13【解析】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,A
12、C分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a, 求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a, ,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和
13、空間想象,運算求解的能力,屬于難題,14【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設(shè)長方體的長寬高為,由題意可得:,據(jù)此可得:,則球的表面積:,結(jié)合解得:.點睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.152【解析】根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因為,
14、累加可得.若,注意到當(dāng)時,不滿足對任意的正整數(shù)均有.所以.當(dāng)時,證明:對任意的正整數(shù)都有.當(dāng)時, 成立.假設(shè)當(dāng)時結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結(jié)合參數(shù)的范圍問題進行分析.屬于難題.16 【解析】多項式 滿足令,得,則該多項式的一次項系數(shù)為令,得故答案為5,72三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1) ; (2).【解析】(1)由正弦定理化簡已知等式可得sinBcosAsinAsinB1
15、,結(jié)合sinB1,可求tanA,結(jié)合范圍A(1,),可得A的值;(2)由已知可求C,可求b的值,根據(jù)三角形的面積公式即可計算得解【詳解】(1)bcosAasinB1由正弦定理可得:sinBcosAsinAsinB1,sinB1,cosAsinA,tanA,A(1,),A;(2)a2,B,A,C,根據(jù)正弦定理得到 b6,SABCab6【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題18 (I) an=2n-1,bn=【解析】(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II) n2【詳解】(I) a1=b解得d=2q=3,
16、故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.19(1),;(2),.【解析】(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果【詳解】(1)由題意得,(2)由,解得,所以對稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型20(1),;(2)【解析】(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關(guān)系分別求出,進而求
17、出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責(zé)人的抽取方法,得出第4組抽取的學(xué)生中至少有一名是負責(zé)人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學(xué)生,所以利用分層抽樣在50名學(xué)生中抽取5名學(xué)生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設(shè)第3組的3位同學(xué)為、,第4組的2位同學(xué)為、,第5組的1位同學(xué)為,則從五位同學(xué)中抽兩位同學(xué)有10種可能抽法如下:,其中第4組的2位同學(xué)、至少
18、有一位同學(xué)是負責(zé)人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎(chǔ)題.21(1)見解析;(2)【解析】(1)補充完整的列聯(lián)表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值, 所以有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)(2)抽取的5名學(xué)生中競賽成績合格的有名學(xué)生,記為,競賽成績不合格的有名學(xué)生,記為,從這5名學(xué)生中隨機抽取2名學(xué)生的基本事件有:,共10種, 這2名學(xué)生競賽成績都合格的基本事件有:,共3種, 所以這2名學(xué)生競賽成績都合格的概率為22(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024丁方物業(yè)管理與維護合同
- 雇傭合同案例寶庫
- 住宿管理承包合同范本
- 2024建設(shè)工程設(shè)計合同(專業(yè)建設(shè)工程設(shè)計合同)新版
- 舊物品買賣合同格式
- 化妝品店轉(zhuǎn)讓合同樣本
- 2024年采購管理程序
- 建材加盟合同范本大全
- 全面合伙合同模板集合
- 就業(yè)協(xié)議書填寫指南與示例
- 2024-2025學(xué)年浙教版八年級上冊科學(xué)期中模擬卷
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導(dǎo)則
- 智能制造工程生涯發(fā)展報告
- 二級公立醫(yī)院績效考核三級手術(shù)目錄(2020版)
- 《個人防護用品PPE》ppt課件
- 國際貿(mào)易SimTrade外貿(mào)實習(xí)報告
- 導(dǎo)師帶徒實施辦法6、30
- 《Fishing with Grandpa》RAZ分級閱讀繪本pdf資源
- 水穩(wěn)施工方案(完整版)
- 跨海大橋施工方案
- MATLAB語言課程論文 基于MATLAB的電磁場數(shù)值圖像分析
評論
0/150
提交評論