2022屆隨州市重點中學數(shù)學高二第二學期期末考試模擬試題含解析_第1頁
2022屆隨州市重點中學數(shù)學高二第二學期期末考試模擬試題含解析_第2頁
2022屆隨州市重點中學數(shù)學高二第二學期期末考試模擬試題含解析_第3頁
2022屆隨州市重點中學數(shù)學高二第二學期期末考試模擬試題含解析_第4頁
2022屆隨州市重點中學數(shù)學高二第二學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高二下數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1從10名大學畢業(yè)生中選3人擔任村長助理,則甲、乙至少有1人入選,而丙沒有入選的不同選法的種數(shù)為()A85B56C49D282已知是虛數(shù)單位,復數(shù)滿足,則( )ABC2D13命題“對

2、任意的,”的否定是A不存在,B存在,C存在,D對任意的,4若雙曲線x2a2-yA52B5C625為客觀了解上海市民家庭存書量,上海市統(tǒng)計局社情民意調查中心通過電話調查系統(tǒng)開展專項調查,成功訪問了位市民,在這項調查中,總體、樣本及樣本的容量分別是( )A總體是上海市民家庭總數(shù)量,樣本是位市民家庭的存書量,樣本的容量是B總體是上海市民家庭的存書量,樣本是位市民家庭的存書量,樣本的容量是C總體是上海市民家庭的存書量,樣本是位市民,樣本的容量是D總體是上海市民家庭總數(shù)量,樣本是位市民,樣本的容量是6設i是虛數(shù)單位,z表示復數(shù)z的共軛復數(shù).若z=1+i,則ziA-2 B-2i C2 D2i7宋元時期數(shù)學

3、名著算學啟蒙中有關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的分別為12,4,則輸出的等于( )A4B5C6D78設集合A=x1,x2,xA60B100C120D1309已知函數(shù)的圖象在點處的切線為,若也與函數(shù),的圖象相切,則必滿足( )ABCD10 “三個臭皮匠,賽過諸葛亮”,這是我們常說的口頭禪,主要是說集體智慧的強大. 假設李某智商較高,他獨自一人解決項目M的概率為;同時,有個水平相同的人也在研究項目M,他們各自獨立地解決項目M的概率都是.現(xiàn)在李某單獨研究項目M,且這個人組成的團隊也同時研究項目M,設這個人團隊解決

4、項目M的概率為,若,則的最小值是( )A3B4C5D611已知集合,下列結論成立的是ABCD12已知隨機變量,其正態(tài)分布曲線如圖所示,若向正方形OABC中隨機投擲10000個點,則落入陰影部分的點數(shù)估計值為()(附:則)A6038B6587C7028D7539二、填空題:本題共4小題,每小題5分,共20分。13將5個數(shù)學競賽名額分配給3個不同的班級,其中甲、乙兩個班至少各有1個名額,則不同的分配方案和數(shù)有_.14設等差數(shù)列的公差為,若的方差為1,則=_15如圖是一個算法流程圖,若輸入的值為2,則輸出的值為_. .16如圖,在三角形中,D為邊上一點, 且,則為_. 三、解答題:共70分。解答應寫

5、出文字說明、證明過程或演算步驟。17(12分)各項均為正數(shù)的數(shù)列的首項,前項和為,且(1)求的通項公式:(2)若數(shù)列滿足,求的前項和18(12分)已知函數(shù)()若曲線在處切線的斜率等于,求的值;()若對于任意的,總有,求的取值范圍19(12分)大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩余的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:日需求量頻數(shù)以天記錄的各日需求量的頻率代替各日需求量的概率.(1)求該超市水果日需求量(單位:千克)的分布列;(2)若該超市一天購進水果千克,記

6、超市當天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學期望.20(12分)如圖,在中,D是邊BC上一點,(1)求DC的長;(2)若,求的面積21(12分)某地區(qū)舉辦知識競答比賽,比賽共有四道題,規(guī)則如下:答題過程中不論何時,若選手出現(xiàn)兩題答錯,則該選手被淘汰分數(shù)記為,其它情況下,選手每答對一題得分,此外若選手存在恰連續(xù)3次答對題目,則額外加分,若次全答對,則額外加分.已知某選手每次答題的正確率都是,且每次答題結果互不影響.求該選手恰答對道題的概率;記為該選手參加比賽的最終得分,求的分布列與數(shù)學期望.22(10分)某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式

7、為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù),并將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:超過不超過第一種生產(chǎn)方式第二種生產(chǎn)方式(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?附:, 參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解

8、析】試題分析:根據(jù)題意:,故選C.考點:排列組合.2、A【解析】分析:先根據(jù)已知求出復數(shù)z,再求|z|.詳解:由題得,所以.故答案為A.點睛:(1)本題主要考查復數(shù)的除法運算,意在考查學生對該基礎知識的掌握水平.(2) 復數(shù)的模.3、C【解析】注意兩點:1)全稱命題變?yōu)樘胤Q命題;2)只對結論進行否定“對任意的,”的否定是:存在,選C.4、A【解析】由垂直關系得出漸近線的斜率,再轉化為離心率e的方程即可【詳解】雙曲線的一條漸近線與直線y=2x垂直,-bb2a2=c2故選A【點睛】本題考查雙曲線的漸近線,掌握兩直線垂直的充要條件是解題基礎5、B【解析】根據(jù)總體、樣本及樣本的容量的概念,得到答案.【

9、詳解】根據(jù)題目可知,總體是上海市民家庭的存書量,樣本是位市民家庭的存書量,樣本的容量是故選B項.【點睛】本題考查總體、樣本及樣本的容量的概念,屬于簡單題.6、C【解析】試題分析:因為z=1+i,所以z=1-i,所以z考點:復數(shù)的運算.HYPERLINK /console/media/qsh6Myc1lfHNxowJbW_3haJ_F9Pgj2KLPLkUqChiS_SGzXX5EfCommR-w0XEaucnn8gnI7EFpGtUW-UAYn4k-kWqFYBdEHY-3dc3ovD4vSFGWKNYpBzstBX8z5IcqJYUd4PzhMfR9yrGqYq9wLNHJg視頻7、A【解析

10、】分析:本題給只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可(注意避免計算錯誤)詳解:模擬程序的運行,可得,不滿足結束循環(huán)的條件,執(zhí)行循環(huán)體,; 不滿足結束循環(huán)的條件,執(zhí)行循環(huán)體,;不滿足結束循環(huán)的條件,執(zhí)行循環(huán)體,;滿足結束循環(huán)的條件,退出循環(huán),輸出的值為,故選A.點睛:本題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題. 解決程序框圖問題時一定注意以下幾點:(1) 不要混淆處理框和輸入框;(2) 注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3) 注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4) 處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5) 要注意各個框的順序,(6)在給出程

11、序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.8、D【解析】根據(jù)題意,xi中取0的個數(shù)為2,3,4.根據(jù)這個情況分類計算再相加得到答案【詳解】集合A中滿足條件“1xxi中取0的個數(shù)為則集合個數(shù)為:C5故答案選D【點睛】本題考查了排列組合的應用,根據(jù)xi中取0的個數(shù)分類是解題的關鍵9、D【解析】函數(shù)的導數(shù)為,圖像在點處的切線的斜率為,切線方程為,即,設切線與相切的切點為,由的導數(shù)為,切線方程為,即,由,可得,且,解得,消去,可得,令,在上單調遞增,且,所以有的根,故選D.10、B【解析】設這個人團隊解決項目的概率為,則,由,得,由此能求出的最小值【詳解】

12、李某智商較高,他獨自一人解決項目的概率為,有個水平相同的人也在研究項目,他們各自獨立地解決項目的概率都是0.1,現(xiàn)在李某單獨研究項目,且這個人組成的團隊也同時研究,設這個人團隊解決項目的概率為,則,解得的最小值是1故選【點睛】本題考查實數(shù)的最小值的求法,考查次獨立重復試驗中事件恰好發(fā)生次的概率的計算公式等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題11、D【解析】由已知得,則,故選D.12、B【解析】隨機變量, ,落入陰影部分的點的個數(shù)的估計值為個選B二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】首先分給甲乙每班一個名額,余下的3個名額分到3個班,每班一個,有1

13、中分配方法;一個班1個,一個班2個,一個班0個,有種分配方法;一個班3個,另外兩個班0個有3種分配方法;據(jù)此可得,不同的分配方案和數(shù)有6+3+1=10種.14、【解析】由題意得 ,因此 15、5【解析】直接模擬程序即可得結論.【詳解】輸入的值為2,不滿足,所以,故答案是:5.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有程序框圖的輸出結果的求解,屬于簡單題目.16、【解析】延長AD,過點C作,垂足為E,由,則,設,則,可證明,則,從而求得,即的值.【詳解】解:如圖,延長AD,過點C作,垂足為E,設,則, ,則,.故答案為:.【點睛】本題考查了銳角三角函數(shù)的定義,相似三角形的判定和性質

14、以及直角三角形的性質,基礎知識要熟練掌握.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、 (1) ; (2) 【解析】(1)已知,可得,則,并驗證 時,是否滿足等式,從而知數(shù)列是等差數(shù)列,求其通項即可。 (2)因為=,是由等差數(shù)列和等比數(shù)列的對應項的積組成的數(shù)列,用錯位相減法即可求和?!驹斀狻浚?)因為,所以當時,-得:,因為的各項均為正數(shù),所以,且,所以由知,即,又因為,所以故,所以數(shù)列是首項為,公差為的等差數(shù)列(2)由(1)得,所以,-得,當且時,;當時,由得綜上,數(shù)列的前項和【點睛】本題主要考查了等差數(shù)列,等比數(shù)列以及數(shù)列的求和。利用等比數(shù)列求和公式時,當公比是字母

15、時,要注意討論公式的范圍。屬于中檔題。18、();()【解析】()求導得到,解得答案.()變換得到,設,則在單調遞減,恒成立,令,根據(jù)函數(shù)的單調性得到答案.【詳解】(),由,解得(),不妨設,即,即設,則在單調遞減,在恒成立,在恒成立令,則,令,當時,即在單調遞減,且,在恒成立,在單調遞減,且,【點睛】本題考查了根據(jù)切線求參數(shù),恒成立問題,意在考查學生的計算能力和綜合應用能力.19、 (1)分布列見解析.(2)分布列見解析;元【解析】分析:(1)根據(jù)表格得到該超市水果日需求量(單位:千克)的分布列;(2)若A水果日需求量為140千克,則X=140(1510)(150140)(108)=680元

16、,則P(X=680)=0.1若A水果日需求量不小于150千克,則X=150(1510)=750元,且P(X=750)=10.1=0.2由此能求出X的分布列和數(shù)學期望E(X)詳解:(1)的分布列為 (2)若水果日需求量為千克,則 元,且.若水果日需求量不小于千克,則元,且.故的分布列為元.點睛:求解離散型隨機變量的數(shù)學期望的一般步驟為:第一步是“判斷取值”,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;第二步是:“探求概率”,即利用排列組合、枚舉法、概率公式(常見的有古典概型公式、幾何概型公式、互斥事件的概率和公式、獨立事件的概率積公式,以及對立事件的概率公式等),求出隨機變量取每個值

17、時的概率;第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或事件的概率是否正確;第四步是“求期望值”,一般利用離散型隨機變量的數(shù)學期望的定義求期望的值,對于有些實際問題中的隨機變量,如果能夠斷定它服從某常見的典型分布(如二項分布XB(n,p),則此隨機變量的期望可直接利用這種典型分布的期望公式(E(X)np)求得.20、(1)3(2)【解析】(1)在中,中分別使用正弦定理,結合,即,即得解;(2)在中,中分別使用余弦定理,結合,可解得,分別計算,又可得解.【詳解】(1)在中,由正弦定理,得在中,由正弦定理,得因為,所以,所以從而有,即又,所以(2)在中,由余弦

18、定理,得在中,由余弦定理,得由,得因為,所以故有解得又,所以,;故的面積【點睛】本題考查了正弦定理、余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.21、;.【解析】(1)通過二項分布公式即可得到概率;(2)可能的取值為,分別求出所求概率,于是得到分布列和數(shù)學期望.【詳解】該選手每次答題的正確率都是,四道題答對的情況有種恰答對道題的概率由題可能的取值為,的分布列如下.【點睛】本題主要考查二項分布的運用,數(shù)學期望與分布列的相關計算,意在考查學生的分析能力,轉化能力,計算能力,難度中等.22、(1)第二種生產(chǎn)方式的效率更高. 理由見解析(2)80(3)能【解析】分析:(1)計算兩種生產(chǎn)方式的平均時間即可(2)計算出中位數(shù),再由莖葉圖數(shù)據(jù)完成列聯(lián)表(3)由公式計算出,再與6.635比較可得結果詳解:(1)第二種生產(chǎn)方式的效率更高.理由如下:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論