




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.1Introduction toBinomial TreesChapter 92021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.2A Simple Binom
2、ial Modelof Stock Price MovementsIn a binomial model, the stock priceat the BEGINNING of a periodcan lead to only 2 stock pricesat the END of that period2021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.3Option Pricing Based on
3、 the Assumption of No Arbitrage Opportunities Procedures: Establish a portfolio of stock and option Value the Portfolio no arbitrage opportunities no uncertainty at maturity no risk with the portfolio risk-free interest earnedValue the optionRisk-free interest = value of portfolio today2021/9/11Opti
4、ons, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.4A Simple Binomial Model:ExampleA stock price is currently $20In three months it will be either $22 or $18Stock Price = $22Stock Price = $18Stock price = $202021/9/11Options, Futures, and Ot
5、her Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.5Stock Price = $22Option Price = $1Stock Price = $18Option Price = $0Stock price = $20Option Price=?A Call Option A 3-month call option on the stock has a strike price of $21. Figure 9.1 (P.202)2021/9/11Options
6、, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.6Consider the Portfolio:LONG D sharesSHORT 1 call optionFigure 9.1 becomesPortfolio is riskless when 22D 1 = 18D or D = 0.2522D 118DSetting Up a Riskless PortfolioS0 = 202021/9/11Options, Futur
7、es, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.7Valuing the Portfolio( with Risk-Free Rate 12% )The riskless portfolio is: LONG 0.25 shares SHORT 1 call optionThe value of the portfolio in 3 months is22 * 0.25 - 1 = 4.50 = 18 * 0.25The value of th
8、e portfolio today is 4.50e-0.12*0.25=4.36702021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.8Valuing the OptionThe portfolio that is:LONG 0.25 sharesSHORT 1 call optionis worth 4.367The value of the shares is5.000 = 0.25 * 20T
9、he value of the option is therefore0.633 = 5.000 - 4.3672021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.9Generalization Consider a derivativethat lasts for time T andthat is dependent on a stockFigure 9.2 (P.203)S0u uS0d dS02
10、021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.10Generalization (continued)Consider the portfolio that is:LONG sharesSHORT 1 derivative Figure 9.2 becomesThe portfolio is riskless when S0uD u = S0d D d or whenS0uD uS0 dD dS0
11、- f2021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.11Generalization (continued)Value of the portfolio at time T is S0u D uValue of the portfolio today is (S0u D u )erTAnother expression for the portfolio value today is S0 D f
12、Hence, = S0 D (S0u D u )erT 2021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.12Generalization(continued)Substituting for D we obtain = p u + (1 p )d erTwhere 2021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 b
13、y John C. HullTang Yincai, Shanghai Normal University9.13Generalization (continued) : Proof with an ExampleThis is known as the No Arbitrage methodologyIn our earlier example f=0.633 and =0.25If f S0-f=0.25*20-0.6=4.44.367 t = 0 ST=18 ST=22Buy call-0.600 0 1 Sell Shares5.000 -18*0.25=-4.50 -22*0.25=
14、-5.50 Lend 4.367 at r-4.367 4.50 4.50 Net Flows0.033 0 02021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.14Generalization (continued) : Proof with an ExampleIf f 0.633, e.g. f=0.65 = S0-f=0.25*20-0.65=4.35 9.46376What Happens
15、When anOption is American?72 048 43220601.414740 12505.0894ABCDFE6282.08.02.18.0ee1.0*0.05=-=-=DdudpTrRule:The value of the option at the final nodes is the same for the European optionAt earlier nodes it is the greater of - The value given by (9.2) - The payoff from early exercise2021/9/11Options,
16、Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.29DeltaDelta () is the ratio ofthe change in the price of a stock option tothe change in the price of the underlying stockThe value of varies from node to node 2021/9/11Options, Futures, and Othe
17、r Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.30Using Binomial Trees in PracticeRealistically, only 1 or 2 time steps is not nearlyenough. Practitioners usually use 30 or more.The values for u and d are usually determined from the stocks volatilityIf stock p
18、rices are assumed to be lognormal (then geometric returns are normal), then2021/9/11Options, Futures, and Other Derivatives, 4th edition 2000 by John C. HullTang Yincai, Shanghai Normal University9.31Importance of a Stocks VolatilityLets look at two examples, both as 3 month callswith X=21 and where r = 0Case I: S0u = 22 Case II: S0u = 26 fu = 1 fu = 5 S0=20 S0=20 f =0.5 f =2.5 S0d = 18 S0d = 14 fd = 0 fd = 0 In both cases, p=0.5 5.06.03.07.03.17.017.03.17.0ee5.02.01.09.01.19.019.01.19.0ee12/3*0212/3*01=-=-=-=-=-=-=DDdudpdudptrtrImportance of a Stocks VolatilityImportanc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國木器涂料樹脂行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國新交通系統(tǒng)行業(yè)發(fā)展現(xiàn)狀及發(fā)展趨勢與投資風(fēng)險研究報告
- 杭州市保俶塔申花實驗學(xué)校招聘考試真題2024
- 腦出血病人的護(hù)理及健康指導(dǎo)
- 河北高考改革數(shù)學(xué)試卷
- 慢性粒細(xì)胞性白血病健康教育
- 業(yè)務(wù)委托協(xié)議合同范本
- 美容床設(shè)備轉(zhuǎn)讓合同范本
- 贈給女兒的房子合同范本
- 采購營養(yǎng)土廠商合同范本
- 中藥知識講解課件
- 施工資源需求計劃與調(diào)配策略
- 預(yù)制箱梁首件工程施工總結(jié)
- 2024-2025學(xué)年人教版高二化學(xué)選擇性必修3配套課件 基礎(chǔ)課時4 有機(jī)物分子式和分子結(jié)構(gòu)的確定
- 湖南省岳陽市2024-2025學(xué)年小升初模擬數(shù)學(xué)測試卷含解析
- 寵物店店員的工作職責(zé)與服務(wù)理念
- 高中家長會 高一下學(xué)期期末家長會課件
- 2025浙江衢州市柯城區(qū)國企業(yè)招聘31人高頻重點提升(共500題)附帶答案詳解
- 中國平面設(shè)計行業(yè)發(fā)展運行現(xiàn)狀及投資潛力預(yù)測報告
- 口腔門診顧客關(guān)系管理策略
- 2015-2024年十年高考化學(xué)真題分類匯編專題34 反應(yīng)熱計算-蓋斯定律(原卷版)
評論
0/150
提交評論