![排隊論的matlab仿真(包括仿真代碼)_第1頁](http://file4.renrendoc.com/view/ddc82fa27b47f007ff420e1abc575cfe/ddc82fa27b47f007ff420e1abc575cfe1.gif)
![排隊論的matlab仿真(包括仿真代碼)_第2頁](http://file4.renrendoc.com/view/ddc82fa27b47f007ff420e1abc575cfe/ddc82fa27b47f007ff420e1abc575cfe2.gif)
![排隊論的matlab仿真(包括仿真代碼)_第3頁](http://file4.renrendoc.com/view/ddc82fa27b47f007ff420e1abc575cfe/ddc82fa27b47f007ff420e1abc575cfe3.gif)
![排隊論的matlab仿真(包括仿真代碼)_第4頁](http://file4.renrendoc.com/view/ddc82fa27b47f007ff420e1abc575cfe/ddc82fa27b47f007ff420e1abc575cfe4.gif)
![排隊論的matlab仿真(包括仿真代碼)_第5頁](http://file4.renrendoc.com/view/ddc82fa27b47f007ff420e1abc575cfe/ddc82fa27b47f007ff420e1abc575cfe5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、WirelessNetworkExperimentThree:QueuingTheoryABSTRACTThisexperimentisdesignedtolearnthefundamentalsofthequeuingtheory.MainlyabouttheM/M/SandM/M/n/nqueuingmodels.KEYWORDS:queuingtheory,M/M/s,M/M/n/n,ErlangB,ErlangC.INTRODUCTIONAqueueisawaitinglineandqueueingtheoryisthemathematicaltheoryofwaitinglines.
2、Moregenerally,queueingtheoryisconcernedwiththemathematicalmodelingandanalysisofsystemsthatprovideservicetorandomdemands.Incommunicationnetworks,queuesareencounteredeverywhere.Forexample,theincomingdatapacketsarerandomlyarrivedandbuffered,waitingfortheroutertodeliver.Suchsituationisconsideredasaqueue
3、.Aqueueingmodelisanabstractdescriptionofsuchasystem.Typically,aqueueingmodelrepresents(1)thesystemsphysicalconfiguration,byspecifyingthenumberandarrangementoftheservers,and(2)thestochasticnatureofthedemands,byspecifyingthevariabilityinthearrivalprocessandintheserviceprocess.Theessenceofqueueingtheor
4、yisthatittakesintoaccounttherandomnessofthearrivalprocessandtherandomnessoftheserviceprocess.ThemostcommonassumptionaboutthearrivalprocessisthatthecustomerarrivalsfollowaPoissonprocess,wherethetimesbetweenarrivalsareexponentiallydistributed.Theprobabilityoftheexponentialdistributionfunctionisf(t)=入e
5、入t.ErlangBmodelOneofthemostimportantqueueingmodelsistheErlangBmodel(i.e.,M/M/n/n).ItassumesthatthearrivalsfollowaPoissonprocessandhaveafinitenservers.InErlangBmodel,itassumesthatthearrivalcustomersareblockedandclearedwhenalltheserversarebusy.TheblockedprobabilityofaErlangBmodelisgivenbythefamousErla
6、ngBformula,(I)PE(n3=,蛙、2k=i)kTwherenisthenumberofserversandA=A/istheofferedloadinErlangs,入isthearrivalrateand1/p.istheaverageservicetime.Formula(1.1)ishardtocalculatedirectlyfromitsrightsidewhennandAarelarge.However,itiseasytocalculateitusingthefollowingiterativescheme:ErlangCmodelTheErlangdelaymode
7、l(M/M/n)issimilartoErlangBmodel,exceptthatnowitassumesthatthearrivalcustomersarewaitinginaqueueforaservertobecomeavailablewithoutconsideringthelengthofthequeue.Theprobabilityofblocking(alltheserversarebusy)isgivenbytheErlangCformula,Wherep=1ifAnandp=AifAn.Thequantitypindicatestheserverutilization.nT
8、heErlangCformula(1.3)canbeeasilycalculatedbythefollowingiterativeschemewhereP(n,A)isdefinedinEq.(1.1).BDESCRIPTIONOFTHEEXPERIMENTSUsingtheformula(1.2),calculatetheblockingprobabilityoftheErlangBmodel.DrawtherelationshipoftheblockingprobabilityPB(n,A)andofferedtrafficAwithn=1,2,10,20,30,40,50,60,70,8
9、0,90,100.Compareitwiththetableinthetextbook(P.281,table10.3).Fromtheintroduction,weknowthatwhenthenandAarelarge,itiseasytocalculatetheblockingprobabilityusingtheformula1.2asfollows.P(n,A)=APB(n_Bm+APB(n-1,A)itusethetheoryofrecursionforthecalculation.Butthedenominatorandthenumeratoroftheformulabothne
10、edtorecurs(PB(n-1,A)whendoingthematlabcalculation,itwastetimeandreducethematlabcalculationefficient.Sowechangetheformulatobe:PB(n,A)=APPB(n,A)=APB(n1,A)nAPb(n1,A)1=1/(12nAPB(n_1AAPB(nAPB(n-1,A)1,A)Thenthecalculationonlyneedrecursoncetimeandismoreefficient.Thematlabcodefortheformulais:erlang_b.m%*%Fi
11、le:erlanb_b.m%A=offeredtrafficinErlangs.%n=numberoftrunckedchannels.%Pbistheresultblockingprobability.%*functionPb=erlang_b(A,n)ifn=0Pb=1;%P(0,A)=1elsePb=1/(1+n/(A*erlang_b(A,n-1);%userecursionerlang(A,n-1)endendAswecanseefromthetableonthetextbooks,itusesthelogarithmcoordinate,sowealsousethelogarith
12、mcoordinatetoplottheresult.Wedividethenumberofservers(n)intothreeparts,foreachpartwecandefineaintervalofthetrafficintensity(A)basedonthefigureonthetextbooks:1.when0n10,0.1A10.when10n20,3A20.when30n100,13A*rofTrunkdClia-Hntla(C13I4?tAnM-MiLBSM10.0血0.01-TrafficlEueniiEyisBrito*Nwal*rofTrunkdClia-Hntla
13、(C13I4?tAnM-MiLBSM10.0血0.01-TrafficlEueniiEyisBrito*Wecanseefromthetwopicturesthat,theyareexactlythesamewitheachotherexceptthattheresultoftheexperimenthavenotconsideredthesituationwithn=3,4,5,.,12,14,16,18.2.Usingtheformula(1.4),calculatetheblockingprobabilityoftheErlangCmodel.Drawtherelationshipoft
14、heblockingprobabilityPC(n,A)andofferedtrafficAwithn=1,2,10,20,30,40,50,60,70,80,90,100.Fromtheintroduction,weknowthattheformula1.4is:PCPC(n,A)=nPB(n,A)n-A(1-PB(n,A)SinceeachtimewecalculatetheP(n,A),weneedtorecursntimes,sotheformulaisnotBefficient.Wechangeittobe:PC(n,A)=nPB(n,A)n-A(1-pB(n,A)=1/n_A(1_
15、PB(n,A)PC(n,A)=nPB(n,A)n-A(1-pB(n,A)Thenweonlyneedrecursonce.PB(n,A)iscalculatedbythe“erlang_b”functionasstep1.Thematlabcodefortheformulais:erlang_c.m%*%File:erlanb_b.m%A=offeredtrafficinErlangs.%n=numberoftrunckedchannels.%Pbistheresultblockingprobability.%erlang_b(A,n)isthefunctionofstep1.%*functi
16、onPc=erlang_c(A,n)Pc=1/(A/n)+(n-A)/(n*erlang_b(A,n);endThentofigureoutthetableinthelogarithmcoordinateaswhatshowninthestep1.Thematlabcodeis:%*%forthethreeparts.%nisthenumberservers.%Aisthetrafficindensity.%P_cistheblockingprobabilityoferlangCmodel.%*n_1=1:2;A_1=linspace(0.1,10,50);%50pointsbetween0.
17、1and10.n_2=10:10:20;A_2=linspace(3,20,50);n_3=30:10:100;A_3=linspace(13,120,50);%*%foreachpart,calltheerlang_c()function.%*fori=1:length(n_1)forj=1:length(A_1)p_1_c(j,i)=erlang_c(A_1(j),n_1(i);%pOA_Eyerlang_cendendfori=1:length(n_2)forj=1:length(A_2)p_2_c(j,i)=erlang_c(A_2(j),n_2(i);endendfori=1:len
18、gth(n_3)forj=1:length(A_3)p_3_c(j,i)=erlang_c(A_3(j),n_3(i);endend%*%useloglogtofiguretheresultwithinlogarithmcoordinate.%*loglog(A_1,p_1_c,g*-,A_2,p_2_c,g*-,A_3,p_3_c,g*-);xlabel(TrafficindensityinErlangs(A)ylabel(ProbabilityofBlocking(P)axis(0.11200.0010.1)text(.115,.115,n=1)text(.6,.115,n=2)text(
19、6,.115,10)text(14,.115,20)text(20,.115,30)text(30,.115,40)text(39,.115,50)text(47,.115,60)text(55,.115,70)text(65,.115,80)text(75,.115,90)text(85,.115,100)TheresultofblockingprobabilitytableoferlangCmodel.EBu住星口右xi-KFqaEBu住星口右xi-KFqa在ThenweputthetableoferlangBanderlangCintheonefigure,tocomparetheirc
20、haracteristic.E盂口in苫JTE盂口in苫JTiH-gqEd1D1io1Tr-sffic-ndensrlyinErbrig!爐iIfl3Thematlabcodeis:Thematlabcodeis:mms_function.mid1id1a1icrTraficindensfcyinErl-angsThelinewith*istheerlangCmodel,thelinewithout*istheerlangBmodel.Wecanseefromthepicturethat,foraconstanttrafficintensity(A),theerlangCmodelhasahi
21、gherblockingprobabilitythanerlangBmodel.Theblockingprobabilityisincreasingwithtrafficintensity.Thesystemperformsbetterwhenhasalargern.ADDITIONALBONUSWriteaprogramtosimulateaM/M/kqueuesystemwithinputparametersoflamda,mu,k.Inthispart,wewillfirstlysimulatetheM/M/kqueuesystemusematlabtogetthefigureofthe
22、performanceofthesystemsuchastheleavetimeofeachcustomerandthequeuelengthofthesystem.Aboutthesimulation,wefirstlycalculatethearrivetimeandtheleavetimeforeachcustomer.Thenanalysisoutthequeuelengthandthewaittimeforeachcustomeruse“for”loops.Thenwelettheinputtobelamda=3,mu=1andS=3,andanalysisperformanceof
23、thesystemforthefirst10customersindetail.Finally,wewilldotwotesttocomparedtheperformanceofthesystemwithinputlamda=1,mu=1andS=3andtheinputlamda=4,mu=1andS=3.functionblock_rate,use_rate=MMS_function(mean_arr,mean_serv,peo_num,server_num)%firstpart:computethearrivingtimeinterval,servicetime%interval,wai
24、tingtime,leavingtimeduringthewholeserviceinterval%state=zeros(5,peo_num);%representthestateofeachcustomerby%usinga5*peo_nummatrix%themeaningofeachlineis:arrivingtimeinterval,servicetime%interval,waitingtime,queuelengthwhenNO.ncustomer%arrive,leavingtimestate(1,:)=exprnd(1/mean_arr,1,peo_num);%arrivi
25、ngtimeintervalbetweeneach%customerfollowsexponetialdistributionstate(2,:)=exprnd(1/mean_serv,1,peo_num);%servicetimeofeachcustomerfollowsexponetialdistributionfori=1:server_numstate(3,1:server_num)=0;endarr_time=cumsum(state(1,:);%accumulatearrivingtimeintervaltocompute%arrivingtimeofeachcustomersta
26、te(1,:)=arr_time;state(5,1:server_num)=sum(state(:,1:server_num);%computelivingtimeoffirstNO.server_num%customerbyusingfomulararrivingtime+servicetimeserv_desk=state(5,1:server_num);%createavectortostoreleavingtimeofcustomerswhichisinservicefori=(server_num+1):peo_numifarr_time(i)min(serv_desk)state
27、(3,i)=0;elsestate(3,i)=min(serv_desk)-arr_time(i);%whencustomerNO.iarrivesandthe%serverisallbusy,thewaitingtimecanbecomputeby%minusarrivingtimefromtheminimumleavingtimeendstate(5,i)=sum(state(:,i);forj=1:server_numifserv_desk(j)=min(serv_desk)serv_desk(j)=state(5,i);breakend%replacetheminimumleaving
28、timebythefirstwaitingcustomersleavingtimeendend%secondpart:computethequeuelengthduringthewholeserviceinterval%zero_time=0;%zero_timeisusedtoidentifywhichserverisemptyserv_desk(1:server_num)=zero_time;block_num=0;block_line=0;fori=1:peo_numifblock_line=0find_max=0;forj=1:server_numifserv_desk(j)=zero
29、_timefind_max=1;%meansthereisemptyserverbreakelsecontinueendendiffind_max=1%updateserv_deskserv_desk(j)=state(5,i);fork=1:server_numifserv_desk(k)min(serv_desk)%ifacustomerwillleavebeforetheNO.i%customerarrivefork=1:server_numifarr_time(i)serv_desk(k)serv_desk(k)=state(5,i);breakelsecontinueendendfo
30、rk=1:server_numifarr_time(i)serv_desk(k)serv_desk(k)=zero_time;elsecontinueendendelse%ifnocustomerleavebeforetheNO.icustomerarriveblock_num=block_num+1;block_line=block_line+1;endendelse%thesituationthatthequeuelengthisnotzeron=0;%computethenumberofleaingcustomerbeforetheNO.icustomerarrivesfork=1:se
31、rver_numifarr_time(i)serv_desk(k)n=n+1;serv_desk(k)=zero_time;elsecontinueendendfork=1:block_lineifarr_time(i)state(5,i-k)n=n+1;elsecontinueendendifnblock_line+1%narr_time(i)form=1:server_numifserv_desk(m)=zero_timeserv_desk(m)=state(5,i-block_line+k)breakelsecontinueendendelsecontinueendendblock_li
32、ne=block_line-n+1;else%n=block_line+1meansthequeuelengthiszero%updateserv_deskandqueuelengthfork=0:block_lineifarr_time(i)state(5,i-k)form=1:server_numifserv_desk(m)=zero_timeserv_desk(m)=state(5,i-k)breakelsecontinueendendelsecontinueendendblock_line=0;endendstate(4,i)=block_line;endplot(state(1,:)
33、,*-);figureplot(state(2,:),g);figureplot(state(3,:),r*);figureplot(state(4,:),y*);figureplot(state(5,:),*-);SincethesystemisM/M/SwhichmeansthearrivingrateandserviceratefollowsPoissondistributionwhilethenumberofserverisSandthebufferlengthisinfinite,wecancomputeallthearrivingtime,servicetime,waitingti
34、meandleavingtimeofeachcustomer.Wecantestthecodewithinputlamda=3,mu=1andS=3.Figuresarebelow.Arrivingtimeofeachcustomercu-stamarnurnbar3DSD1D0ServicetimeofeachcustomerWaitingtimeofeachcustomer108?oQueuelengthwheneachcustomerarriveAslamda=mu*server_num,theloadofthesystemcouldbeveryhigh.Thenwewillzoomin
35、theresultpicturestoanalysistheperformanceofthesystemforthefirstly10customer.Arrivingtimeoffirst10customer1a=1.6-Thequeuelengthis1forthe7thcustomer.11a=1.6-Thequeuelengthis1forthe7thcustomer.1.衛(wèi)-12345673910customBrrtuniberQueuelengthoffirst10customermELe.e=-bh_-u1234567mELe.e=-bh_-u1234567B510cuetoiT
36、i&rhurriberLeavingtimeoffirst10customerAswehave3serverinthistest,thefirst3customerwillbeservedwithoutanydelay.Thearrivingtimeofcustomer4isabout1.4andtheminimumleavingtimeofcustomerinserviceisabout1.2.Socustomer4willbeservedimmediatelyandthequeuelengthisstill0.Customer1,4,3isinservice.Thearrivingtime
37、ofcustomer5isabout1.8andtheminimumleavingtimeofcustomerinserviceisabout1.6.Socustomer5willbeservedimmediatelyandthequeuelengthisstill0.Customer1,5isinservice.Thearrivingtimeofcustomer6isabout2.1andthereisaemptyserver.Socustomer6willbeservedimmediatelyandthequeuelengthisstill0.Customer1,5,6isinservic
38、e.Thearrivingtimeofcustomer7isabout2.2andtheminimumleavingtimeofcustomerinserviceisabout2.5.Socustomer7cannotbeservedimmediatelyandthequeuelengthwillbe1.Customer1,5,6isinserviceandcustomer7iswaiting.Thearrivingtimeofcustomer8isabout2.4andtheminimumleavingtimeofcustomerinserviceisabout2.5.Socustomer8cannotbeservedimmediatelyandthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車輛定點洗車服務合同范本
- 兼職聘用勞動合同
- 北師大版高中數(shù)學(必修3)《算法的基本結(jié)構(gòu)及設(shè)計》教案3篇
- 宇航用步進電機驅(qū)動線路發(fā)展及展望
- 區(qū)塊鏈技術(shù)在公共資源交易檔案管理中的應用
- 大學物理課后習題及答案
- 基于Mahony和EKF融合算法的MEMS關(guān)節(jié)姿態(tài)測量系統(tǒng)
- 2025年外研版選修歷史上冊月考試卷含答案
- 健身器材創(chuàng)新技術(shù)與專利分析考核試卷
- 2025年新世紀版高三語文上冊月考試卷
- 船員健康知識課件
- 《揚州東關(guān)街掠影》課件
- 環(huán)保行業(yè)研究報告
- 物流服務項目的投標書
- 廣西太陽能資源分析
- 地鐵車站低壓配電及照明系統(tǒng)
- 行業(yè)會計比較(第三版)PPT完整全套教學課件
- 值機業(yè)務與行李運輸實務(第3版)高職PPT完整全套教學課件
- 高考英語語法填空專項訓練(含解析)
- 42式太極劍劍譜及動作說明(吳阿敏)
- 部編版語文小學五年級下冊第一單元集體備課(教材解讀)
評論
0/150
提交評論